Método de Euler: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 368: | Linha 368: | ||
</pre> | </pre> | ||
Além disso temos uma discussão sobre o [[Modelo de Lotka-Volterra]] e também sobre [[Modelo de Lotka-Volterra amortecido]], que além da discussão apresenta uma solução numérica utilizando o Método de Euler, com a única diferença de um termo de amortecimento. Uma vez que zerarmos este termo, retornamos ao Modelo de Lotka-Volterra clássico. | |||
= Citações = | = Citações = | ||
Edição das 01h04min de 9 de fevereiro de 2022
Euler explícito
A grande maioria das equações diferenciais de primeira ordem não podem ser resolvidas analiticamente. Para o comportamento a longo prazo de uma solução podemos tentar esboçar um campo de direções, mas se precisamos conhecer mais especificamente como uma solução se comporta, precisamos de outra ferramenta. Os métodos numéricos nos permitem obter soluções aproximadas para as equações diferenciais.
Começando com uma problema genérico de valor inicial:
Considerando que conhecemos a função e os valores na condição inicial, assumimos que é tudo contínuo de forma que sabemos que uma solução de fato vai existir. Temos então para :
Dessa forma podemos escrever uma reta tangente à curva no ponto usando a inclinação :
Para visualizar melhor esta equação, podemos fazer , ficmos então com . Desta forma, fica ainda mais evidente que esta é uma equação de reta com inclinação , e quando temos , ou seja, uma reta que passa pelo ponto . Para temos apenas um deslocamento no eixo.
Então se é perto o suficiente de , a equação da reta vai estar perto do valor atual da solução em . Então podemos escrever:
Podemos repetir o processo, usando agora como valor inicial, então:
Ou de maneira genérica:
Podemos ainda reescrever o passo como , de forma que ficamos com:
Outra forma de visualizar o resultado, é considerar a reta:
Como a solução aproximada para o intervalo . Então com um conjunto de retas podemos ter uma aproximação para a solução como um todo.
Exemplo: Decaimento
O primeiro exemplo de aplicação é o decaimento radiativo, cuja equação diferencial é:
Onde é a quantidade de partículas que sofrem o decaimento e a taxa no qual o decaimento ocorre.
- Notem que a mesma equação pode descrever a diminuição de uma população estéril ( sendo a quantidade de indivíduos vivos e a taxa de mortalidade) ou a descarga de um circuito RC.
- A aplicação do método a este exemplo de primeira ordem nos leva a seguinte relação de recorrência
Ou mais explicitamente:
Implementando:
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos import numpy as np #Biblioteca com funções matemáticas N =[10**6];nt=6;lam=0.1;dt=0.1 #Parâmetros tau=np.log(2)/lam #Tempo final em que vamos obter o erro fac = 1-lam*dt #Função calculada for i in range(int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida N.append(fac*N[i]) #Salvamos o novo valor print(i*dt,N[i]) #printamos o resultado plt.plot(N) #Construimos o gráfico plt.show() #Plotamos
Euler implícito
A equação da reta obtida no euler explícito pode ser obtida a partir da definição da derivada:
Mas também podemos escrever a derivada como:
Mantendo a notação:
O termo não é conhecido, por isso temos uma equação implícita para . Métodos implícitos podem ser usados quando temos restrições muito rigorosas no método explícito devido a condições de estabilidade.
Exemplo: Decaimento
Trabalhando novamente com o decaimento radioativo:
Vamo ter então:
Ou mais explicitamente:
Uma comparação entre os dois métodos de Euler para o caso do decaimento é simples. Lembando da fórmula recursiva de ambos os casos:
E fazendo uma expansão em série de Taylor em torno de , escrevendo , temos:
Então os termos são iguais até a primeira ordem, sendo assim uma boa aproximação.
Implementando o método de euler implícito, temos:
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos import numpy as np #Biblioteca com funções matemáticas N =[10**6];nt=6;lam=0.1;dt=0.1 #Parâmetros tau=np.log(2)/lam #Meia-vida fac = 1+lam*dt #Função calculada for i in range(int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida N.append(N[i]/fac) #Salvamos o novo valor print(i*dt,N[i]) #printamos o resultado plt.plot(N) #Construimos o gráfico plt.show() #Plotamos
Avaliação de erro
Para o cálculo de erros deste exemplo, utilizamos bastante a meia-vida como um valor caratectístico do sistema, principalmente para nos basearmos até definir até onde a simulação vai rodar. A meia vida é simplesmente o tempo necessário para a quantidade de núcleos cair para a metade do valor inicial. Isto é, primeiro temos que a solução analítica é simplesmente:
Então a meia vida é quando :
Erros computados
Erro 1: curva numérica vs exata
import numpy as np #Biblioteca com recursos matemáticos
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos
N0=10**6;nt=6;lam=0.001;dt=100 #Parâmetros
exp = 1-lam*dt #Função calculada para o método explícito
imp = 1+lam*dt #Função calculada para o método implícito
NE = [N0] #Lista de valore para o método explícito
NI = [N0] #Lista de valore para o método implícito
T = [0] #Lista de tempos no qual vamos calcular N
tau=np.log(2)/lam #Tempo final em que vamos obter o erro
#Solução numérica
for i in range(int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida
NE.append(exp*NE[i]) #Explícito
NI.append(NI[i]/imp) #Implícito
T.append((i+1)*dt) #Tempo
#Solução analítica
t = np.arange(0.0,nt*tau, 1) #Tempo
NA =N0*np.exp(-lam*t) #Solução
#Construimos o gráfico
plt.plot(T,NE,color='blue', label='Explícito') #Solução explícita
plt.plot(T,NI,color='orange', label='Implícito') #Solução implícita
plt.plot(t,NA,color='green', label='Sol. Exata') #Solução exata
plt.title('Decaimento radioativo para λ = '+str(lam)+' e dt = '+str(dt)) #Título
plt.legend() #Legenda das curvas
plt.xlabel('Tempo [s]');plt.ylabel('Número de Núcleos [N]') #Legenda dos eixos
plt.ticklabel_format(style='plain') #Desativar a notação científica
plt.show() #Exibir o resultado
Erro 2: Curva de erro pra diferentes dt
import numpy as np #Biblioteca com recursos matemáticos
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos
N0 =10**6;lam=0.001;nt=6 #Parâmetros
dt1=100;dt2=200;dt3=50
def sol_metodo(dt,N0,lam,nt):
"""Função para calcular a solução de acordo com o método de Euler e
retornar o erro comparado a solução analítica e o tempo equivalente"""
#dt - Intervalo do passo
#N0 - Número inicial de Núcleos
#lam - Lambda
#nt - Quantidade de meia vidas que vamos caclular
N=[N0] #Solução
D=[0] #Erro
T=[0] #Tempo
frac = (1-lam*dt) #Funçao calculada
tau=np.log(2)/lam #Meia-vida
for i in range(1,int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida
N.append(frac*N[i-1]) #Solução numérica
T.append(i*dt) #Tempo no qual achamos a solução
err=abs(N[i]-N0*np.exp(-lam*T[i])) #Erro
D.append(err) #Guardamos o erro
return(D,T) #Retorno o erro
(D1,T1) = sol_metodo(dt1,N0,lam,nt) #Solução para dt1
(D2,T2) = sol_metodo(dt2,N0,lam,nt) #Solução para dt2
(D3,T3) = sol_metodo(dt3,N0,lam,nt) #Solução para dt3
#Construimos o gráfico
plt.plot(T1,D1,color='blue', label='dt = '+str(dt1)+' s') #Solução para dt1
plt.plot(T2,D2,color='orange', label='dt = '+str(dt2)+' s') #Solução para dt2
plt.plot(T3,D3,color='green', label='dt = '+str(dt3)+' s') #Solução para dt3
plt.title('Comparação dos erros para dierentes dt (Euler explícito)') #Título
plt.legend() #Legenda das curvas
plt.xlabel('Tempo [s]');plt.ylabel('Erro[abs(N-Nmétodo)]') #Legenda dos eixos
plt.ticklabel_format(style='plain') #Desativar a notação científica
plt.show()
Erro 3: Erro em relação a dt com um t fixo
import numpy as np #Biblioteca com recursos matemáticos
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos
N0 =10**6;lam=0.001 #Parâmetros
dt=[1/10**(i) for i in np.arange(2.9,-0.1,-0.3)]
tfin=[(1,'ob','-k'),(4,'sr','-m')] #Tuplas com os tempos finais e os marcadores principais e do fit
y="log";x="log" #Se os eixos vão ser "linear" ou "log"
def sol_metodo(dtT,N0,lam,t):
"""Função para calcular a solução de acordo com o método de Euler e
retornar o erro comparado a solução analítica"""
#dtT - Intervalo do passo em unidade de tau
#N0 - Número inicial de Núcleos
#lam - Lambda
#t - Tempo em que vamos pegar a solução, múltiplo da meia-vida
N=N0
T=np.log(2)/lam #Tempo final em que vamos obter o erro
dt=dtT*T #Intervalo de tempo em segundos
frac = (1-lam*dt) #Funçao calculada
for i in range(1,int(t*T/dt)+1): #Vamo calcular os passos necessários para 4000s
N=frac*N #Solução numérica
err =abs(N-N0*np.exp(-lam*i*dt)) #Erro
return(err) #Retorno o erro
for t in tfin: #Percorremos todos os tempos finais
E=[] #Lista para guardar todos os erros com
for d in dt:
E.append (sol_metodo(d,N0,lam,t[0])) #Computamos o erro para cada dt
plt.plot(dt,E,t[1], label='t = '+str(t[0])+' τ') #Plot dos marcadores
plt.plot(dt,E,'--'+t[1][1]) #Plot Tracejado
m, b = np.polyfit(np.log(np.array(dt)),np.log(np.array(E)), 1) #Uma curva para fitar os logaritmos
label='ln(erro) = {:.2f} + {:.2f} ln(Δt)'.format(b,m)
plt.plot(dt, np.e**b*np.array(dt)**m,t[2],label=label) #Tiramos a exponencial do logaritmo
#Configuramos o gráfico
plt.title('Erro X dt') #Título
plt.legend() #Legenda das curvas
plt.xlabel('Δt [τ]') #Legenda dos eixos
plt.ylabel('Erro[abs(N-Nmétodo)]')
plt.ticklabel_format(style='plain') #Desativar a notação científica
plt.xscale(x);plt.yscale(y) #Escala
plt.show() #Exibir o resultado
Erro teórico
Outro caminho que podemos tomar para obtermos o método de Euler, é através da expansão em série de Taylor de uma função em torno do ponto . Lembrando que a expansão em série de Taylor de uma função em torno de é dada por:
Então fazendo esta expansão e escrevendo
Podemos olhar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f^{\left(n\right)}\left(a\right)} com mais atenção uma vez que tecnicamente nosssa variável da função que estamos expandindo é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t'} .
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt'}y\left(t'\right)=\frac{y\left(t'+\Delta t'\right)-y\left(t'\right)}{\Delta t'}}
Considerando que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \Delta t} é constante, então: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \Delta t'=\Delta t} , e sendo o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a=t} , temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt'}y\left(t'\right)=\frac{y\left(t'+\Delta t\right)-y\left(t'\right)}{\Delta t}=\frac{d}{dt}f\left(t'\right)\longrightarrow\left.\frac{d}{dt}f\left(t'\right)\right|_{t'=t}=f'\left(t\right)}
De forma que ficamos então apenas com:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} f\left(t+\Delta t\right) & =f\left(t\right)+\Delta tf^{'}\left(t\right)+\sum_{n=2}^{\infty}\frac{f^{\left(n\right)}\left(t\right)}{n!}\Delta t^{n}\end{align}}
Os primeiros dois termos então correspondem ao método de Taylor, e o somatório se torna o erro ao jogarmos fora. O menor grau que desprezamos é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle n=2} , então o erro local é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle Err\left(\Delta t\right)\propto\Delta t^{2}} . E como o número de passos é dado por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N=t/\Delta t} então após Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N} passos temos uma estimativa de erro global dada por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle Err\left(\Delta t,t\right)\propto N \cdot \Delta t^{2} } ou apenas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle Err\left(\Delta t,t\right)\propto\Delta t} . Cálculos mais detalhados da estimativa do erro podem ser encontrados em textos matemáticos[1].
Exemplo: SIR
O modelo SIR é um modelo de epidemia compartimental no qual separamos a população em três compartimentos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle S} : População suscetível
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle I} : População infectada
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle R} : População de recuperados
O modelo SIR é descrito então pelo seguinte conjunto de equações:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dS}{dt} & =-\beta SI\\ \frac{dI}{dt} & =\beta SI-\gamma I\\ \frac{dR}{dt} & =\gamma I\end{align}}
Onde temos as seguintes variáveis:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \beta} : transmissibilidade
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \gamma}
: taxa de recuperação
- É o inverso do tempo que a pessoa permanece infectada Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau=\frac{1}{\gamma}} .
Neste modelo, as pessoas podem se transferir entre os compartimento apenas em um sentido Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle S\rightarrow I\rightarrow R} , e pode-se destacar que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle R} comporta tanto pessoas que se curaram e tornaram-se imunes, quanto falecimentos, em todo, caso, são pessoas que não podem ser suscetíveis a infecção novamente. Como a população total Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N} é constante, temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \dot{N}=0} e por conservação:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{S}+\dot{I}+\dot{R}=0}
Desta forma só precisamos resolver duas equações a cada passo. Além disso podemos considerar que a transmissibilidade de uma doença depende da população total, de forma que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \beta\left(N\right)=\widehat{\beta}/N} , sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \widehat{\beta}} um parâmetro próprio da doença e independente da população. Substituindo e reescrevendo cada compartimento como uma fração da população total, ao invés de números totais, isto é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x=X/N} , seja Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x} um compartimento qualquer, então podemos reescrever o sistema como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{ds}{dt} & =-\widehat{\beta}si\\ \frac{di}{dt} & =\widehat{\beta}si-\gamma i\\ \frac{dr}{dt} & =-\left(\frac{ds}{dt}+\frac{di}{dt}\right)\end{align}}
Um ponto interessante é a condição de epidemia. A segunda equação nos dá a variação de infectados, para termos epidemia precisamos que este valor positivo, isto é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{di}{dt}>0} , logo:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left(\widehat{\beta}s-\gamma\right)i & >0\\ \widehat{\beta}s & >\gamma\\ \widehat{\beta}\tau & >\frac{1}{s}\end{align}}
Considerando como condição inicial que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle S\approx N} , isto é, praticamente toda população é suscetível, logo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle s=1} e temos então o seguinte limiar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \widehat{\beta}\tau\gtrapprox1} para uma condição inicial de epidêma. Podemos definir assim o número reprodutivo básico:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{0}\equiv\widehat{\beta}\tau>1}
Além disso, um modelo SIRS (no qual recuperados podem tornar-se suscetíveis novamente) e com atraso foi discutido aqui
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos b = 0.1 #Transmissibilidade tau = 11 #Tempo que a pessoa permanece infectada g = 1/tau#Taxa de recuperação N = 1000 #População total Np = 5000 #Número de passos dt = 0.5 #Intervalo de tempo #Valores iniciais i=[1/N]; s=[1-i[0]]; r=[0]; t=[0] T=[s[0]+i[0]+r[0]] #Total for it in range(Np): s.append(s[it]-dt*b*s[it]*i[it]) i.append(i[it]+dt*(b*s[it]*i[it]-g*i[it])) r.append(1-(i[it+1]+s[it+1])) t.append(dt+it*dt) T.append(s[it+1]+i[it+1]+r[it+1]) plt.plot(t,i) #Infectados plt.plot(t,s) #Suscetíveis plt.plot(t,r) #Recuperados plt.plot(t,T) #Total
Além disso temos uma discussão sobre o Modelo de Lotka-Volterra e também sobre Modelo de Lotka-Volterra amortecido, que além da discussão apresenta uma solução numérica utilizando o Método de Euler, com a única diferença de um termo de amortecimento. Uma vez que zerarmos este termo, retornamos ao Modelo de Lotka-Volterra clássico.
Citações
- ↑ Euler's Method (William F. Trench, LibreTexts)
Principais materiais utilizados
- Forward and Backward Euler Methods (Michael Zeltkevic, Instituto de Tecnologia de Massachusetts)
- Euler's Method (Paul Dawkins, Universidade Lamar)
- Método de Euler (REAMAT, UFRGS)