Método de Euler
Euler explícito
A grande maioria das equações diferenciais de primeira ordem não podem ser resolvidas analiticamente. Para o comportamento a longo prazo de uma solução podemos tentar esboçar um campo de direções, mas se precisamos conhecer mais especificamente como uma solução se comporta, precisamos de outra ferramenta. Os métodos numéricos nos permitem obter soluções aproximadas para as equações diferenciais.
Começando com uma problema genérico de valor inicial:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dt}=f\left(t,y\right)\qquad y\left(t_{0}\right)=y_{0}}
Considerando que conhecemos a função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f\left(t,y\right)} e os valores na condição inicial, assumimos que é tudo contínuo de forma que sabemos que uma solução de fato vai existir. Temos então para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t=t_{0}} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{dy}{dt}\right|_{t=t_{0}}=f\left(t_{0},y_{0}\right)}
Dessa forma podemos escrever uma reta tangente à curva Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y\left(t\right)} no ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(t_{0},y_{0}\right)} usando a inclinação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f\left(t_{0},y_{0}\right)} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=y_{0}+f\left(t_{0},y_{0}\right)\left(t-t_{0}\right)}
Para visualizar melhor esta equação, podemos fazer Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{0}=0} , ficmos então com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y=y_{0}+f\left(t_{0},y_{0}\right)t} . Desta forma, fica ainda mais evidente que esta é uma equação de reta com inclinação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f\left(t_{0},y_{0}\right)} , e quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t=t_{0}} temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y=y_{0}} , ou seja, uma reta que passa pelo ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(t_{0},y_{0}\right)} . Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{0}\neq0} temos apenas um deslocamento no eixo.
Então se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{1}} é perto o suficiente de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{0}} , a equação da reta vai estar perto do valor atual da solução em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{1}} . Então podemos escrever:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{1}=y_{0}+f\left(t_{0},y_{0}\right)\left(t_{1}-t_{0}\right)}
Podemos repetir o processo, usando agora Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y_{1}=y\left(t_{1}\right)} como valor inicial, então:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{2}=y_{1}+f\left(t_{1},y_{1}\right)\left(t_{2}-t_{1}\right)}
Ou de maneira genérica:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{n+1}=y_{n}+f\left(t_{n},y_{n}\right)\left(t_{n+1}-t_{n}\right)}
Podemos ainda reescrever o passo como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{n+1}-t_{n}=\Delta t} , de forma que ficamos com:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{n+1}=y_{n}+f\left(t_{n},y_{n}\right)\Delta t}
Outra forma de visualizar o resultado, é considerar a reta:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=y_{n}+f\left(t_{n},y_{n}\right)\left(t-t_{n}\right)}
Como a solução aproximada para o intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[t_{n},t_{n+1}\right]} . Então com um conjunto de retas podemos ter uma aproximação para a solução como um todo.
Exemplo: Decaimento
O primeiro exemplo de aplicação é o decaimento radiativo, cuja equação diferencial é: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dN}{dt}=-\lambda N}
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N} é a quantidade de partículas que sofrem o decaimento e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \lambda} a taxa no qual o decaimento ocorre.
- Notem que a mesma equação pode descrever a diminuição de uma população estéril (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N} sendo a quantidade de indivíduos vivos e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \lambda} a taxa de mortalidade) ou a descarga de um circuito RC.
- A aplicação do método a este exemplo de primeira ordem nos leva a seguinte relação de recorrência
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} N_{n+1} & =N_{n}+f\left(t_{n},N_{n}\right)\Delta t\\ N_{n+1} & =N_{n}-\lambda N_{n}\Delta t\\ N_{n+1} & =N_{n}\left(1-\lambda\Delta t\right)\end{align} }
Ou mais explicitamente:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} N\left(t_{n+1}\right) & =\left[1-\lambda\Delta t\right]N\left(t_{n}\right)\\ N\left(t_{n}+\Delta t\right) & =\left[1-\lambda\Delta t\right]N\left(t_{n}\right)\end{align}}
Implementando:
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos import numpy as np #Biblioteca com funções matemáticas N =[10**6];nt=6;lam=0.1;dt=0.1 #Parâmetros tau=np.log(2)/lam #Tempo final em que vamos obter o erro fac = 1-lam*dt #Função calculada for i in range(int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida N.append(fac*N[i]) #Salvamos o novo valor print(i*dt,N[i]) #printamos o resultado plt.plot(N) #Construimos o gráfico plt.show() #Plotamos
Euler implícito
A equação da reta obtida no euler explícito pode ser obtida a partir da definição da derivada:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dt}=f\left(t,y\right)\approx\frac{y\left(t+\Delta t\right)-y\left(t\right)}{\Delta t}\longrightarrow y\left(t+\Delta t\right)\approx y\left(t\right)+f\left(t,y\right)\Delta t}
Mas também podemos escrever a derivada como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dt}=f\left(t,y\right)\approx\frac{y\left(t\right)-y\left(t-\Delta t\right)}{\Delta t}\longrightarrow y\left(t\right)\approx y\left(t-\Delta t\right)+f\left(t,y\right)\Delta t}
Mantendo a notação:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{n+1}=y_{n}+f\left(t_{n+1},y_{n+1}\right)\Delta t}
O termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f\left(t_{n+1},y_{n+1}\right)} não é conhecido, por isso temos uma equação implícita para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y_{n+1}} . Métodos implícitos podem ser usados quando temos restrições muito rigorosas no método explícito devido a condições de estabilidade.
Exemplo: Decaimento
Trabalhando novamente com o decaimento radioativo:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dN}{dt}=-\lambda N}
Vamo ter então:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} N_{n+1} & =N_{n}+f\left(t_{n+1},N_{n+1}\right)\Delta t\\ N_{n+1} & =N_{n}-\lambda N_{n+1}\Delta t\\ N_{n+1}\left(1+\lambda\Delta t\right) & =N_{n}\\ N_{n+1} & =\frac{N_{n}}{1+\lambda\Delta t}\end{align}}
Ou mais explicitamente:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} N\left(t_{n}+\Delta t\right) & =\frac{N\left(t\right)}{1+\lambda\Delta t}\end{align}}
Uma comparação entre os dois métodos de Euler para o caso do decaimento é simples. Lembando da fórmula recursiva de ambos os casos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\left(t_{n}+\Delta t\right)=N\left(t\right)\left[1-\lambda\Delta t\right]\qquad e \qquad N\left(t_{n}+\Delta t\right)=N\left(t\right)\left[\frac{1}{1+\lambda\Delta t}\right]}
E fazendo uma expansão em série de Taylor em torno de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle 0} , escrevendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x=\lambda\Delta t} , temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{1+x}=\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}\left(a\right)\left(x-a\right)^{n}}{n!}=\left(1-x\right)+\sum_{n=2}^{\infty}\frac{f^{\left(n\right)}\left(a\right)\left(x-a\right)^{n}}{n!}}
Então os termos são iguais até a primeira ordem, sendo assim uma boa aproximação.
Implementando o método de euler implícito, temos:
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos import numpy as np #Biblioteca com funções matemáticas N =[10**6];nt=6;lam=0.1;dt=0.1 #Parâmetros tau=np.log(2)/lam #Meia-vida fac = 1+lam*dt #Função calculada for i in range(int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida N.append(N[i]/fac) #Salvamos o novo valor print(i*dt,N[i]) #printamos o resultado plt.plot(N) #Construimos o gráfico plt.show() #Plotamos
Avaliação de erro
Para o cálculo de erros deste exemplo, utilizamos bastante a meia-vida como um valor caratectístico do sistema, principalmente para nos basearmos até definir até onde a simulação vai rodar. A meia vida é simplesmente o tempo necessário para a quantidade de núcleos cair para a metade do valor inicial. Isto é, primeiro temos que a solução analítica é simplesmente:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N=N_{0}e^{-\lambda t}}
Então a meia vida é quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t=\tau} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{N_{0}}{2}=N_{0}e^{-\lambda\tau}\longrightarrow\tau=\frac{\ln\left(2\right)}{\lambda}}
Erros computados
Erro 1: curva numérica vs exata
import numpy as np #Biblioteca com recursos matemáticos
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos
N0=10**6;nt=6;lam=0.001;dt=100 #Parâmetros
exp = 1-lam*dt #Função calculada para o método explícito
imp = 1+lam*dt #Função calculada para o método implícito
NE = [N0] #Lista de valore para o método explícito
NI = [N0] #Lista de valore para o método implícito
T = [0] #Lista de tempos no qual vamos calcular N
tau=np.log(2)/lam #Tempo final em que vamos obter o erro
#Solução numérica
for i in range(int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida
NE.append(exp*NE[i]) #Explícito
NI.append(NI[i]/imp) #Implícito
T.append((i+1)*dt) #Tempo
#Solução analítica
t = np.arange(0.0,nt*tau, 1) #Tempo
NA =N0*np.exp(-lam*t) #Solução
#Construimos o gráfico
plt.plot(T,NE,color='blue', label='Explícito') #Solução explícita
plt.plot(T,NI,color='orange', label='Implícito') #Solução implícita
plt.plot(t,NA,color='green', label='Sol. Exata') #Solução exata
plt.title('Decaimento radioativo para λ = '+str(lam)+' e dt = '+str(dt)) #Título
plt.legend() #Legenda das curvas
plt.xlabel('Tempo [s]');plt.ylabel('Número de Núcleos [N]') #Legenda dos eixos
plt.ticklabel_format(style='plain') #Desativar a notação científica
plt.show() #Exibir o resultado
Erro 2: Curva de erro pra diferentes dt
import numpy as np #Biblioteca com recursos matemáticos
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos
N0 =10**6;lam=0.001;nt=6 #Parâmetros
dt1=100;dt2=200;dt3=50
def sol_metodo(dt,N0,lam,nt):
"""Função para calcular a solução de acordo com o método de Euler e
retornar o erro comparado a solução analítica e o tempo equivalente"""
#dt - Intervalo do passo
#N0 - Número inicial de Núcleos
#lam - Lambda
#nt - Quantidade de meia vidas que vamos caclular
N=[N0] #Solução
D=[0] #Erro
T=[0] #Tempo
frac = (1-lam*dt) #Funçao calculada
tau=np.log(2)/lam #Meia-vida
for i in range(1,int(nt*tau/dt)+1): #Vamo calcular um múltiplo da meia vida
N.append(frac*N[i-1]) #Solução numérica
T.append(i*dt) #Tempo no qual achamos a solução
err=abs(N[i]-N0*np.exp(-lam*T[i])) #Erro
D.append(err) #Guardamos o erro
return(D,T) #Retorno o erro
(D1,T1) = sol_metodo(dt1,N0,lam,nt) #Solução para dt1
(D2,T2) = sol_metodo(dt2,N0,lam,nt) #Solução para dt2
(D3,T3) = sol_metodo(dt3,N0,lam,nt) #Solução para dt3
#Construimos o gráfico
plt.plot(T1,D1,color='blue', label='dt = '+str(dt1)+' s') #Solução para dt1
plt.plot(T2,D2,color='orange', label='dt = '+str(dt2)+' s') #Solução para dt2
plt.plot(T3,D3,color='green', label='dt = '+str(dt3)+' s') #Solução para dt3
plt.title('Comparação dos erros para dierentes dt (Euler explícito)') #Título
plt.legend() #Legenda das curvas
plt.xlabel('Tempo [s]');plt.ylabel('Erro[abs(N-Nmétodo)]') #Legenda dos eixos
plt.ticklabel_format(style='plain') #Desativar a notação científica
plt.show()
Erro 3: Erro em relação a dt com um t fixo
import numpy as np #Biblioteca com recursos matemáticos
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos
N0 =10**6;lam=0.001 #Parâmetros
dt=[1/10**(i) for i in np.arange(2.9,-0.1,-0.3)]
tfin=[(1,'ob','-k'),(4,'sr','-m')] #Tuplas com os tempos finais e os marcadores principais e do fit
y="log";x="log" #Se os eixos vão ser "linear" ou "log"
def sol_metodo(dtT,N0,lam,t):
"""Função para calcular a solução de acordo com o método de Euler e
retornar o erro comparado a solução analítica"""
#dtT - Intervalo do passo em unidade de tau
#N0 - Número inicial de Núcleos
#lam - Lambda
#t - Tempo em que vamos pegar a solução, múltiplo da meia-vida
N=N0
T=np.log(2)/lam #Tempo final em que vamos obter o erro
dt=dtT*T #Intervalo de tempo em segundos
frac = (1-lam*dt) #Funçao calculada
for i in range(1,int(t*T/dt)+1): #Vamo calcular os passos necessários para 4000s
N=frac*N #Solução numérica
err =abs(N-N0*np.exp(-lam*i*dt)) #Erro
return(err) #Retorno o erro
for t in tfin: #Percorremos todos os tempos finais
E=[] #Lista para guardar todos os erros com
for d in dt:
E.append (sol_metodo(d,N0,lam,t[0])) #Computamos o erro para cada dt
plt.plot(dt,E,t[1], label='t = '+str(t[0])+' τ') #Plot dos marcadores
plt.plot(dt,E,'--'+t[1][1]) #Plot Tracejado
m, b = np.polyfit(np.log(np.array(dt)),np.log(np.array(E)), 1) #Uma curva para fitar os logaritmos
label='ln(erro) = {:.2f} + {:.2f} ln(Δt)'.format(b,m)
plt.plot(dt, np.e**b*np.array(dt)**m,t[2],label=label) #Tiramos a exponencial do logaritmo
#Configuramos o gráfico
plt.title('Erro X dt') #Título
plt.legend() #Legenda das curvas
plt.xlabel('Δt [τ]') #Legenda dos eixos
plt.ylabel('Erro[abs(N-Nmétodo)]')
plt.ticklabel_format(style='plain') #Desativar a notação científica
plt.xscale(x);plt.yscale(y) #Escala
plt.show() #Exibir o resultado
Erro teórico
Outro caminho que podemos tomar para obtermos o método de Euler, é através da expansão em série de Taylor de uma função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y\left(t+\Delta t\right)} em torno do ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y\left(t\right)} . Lembrando que a expansão em série de Taylor de uma função em torno de é dada por:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x\right)=\sum_{n=0}^{\infty}\frac{f^{\left(n\right)}}{n!}\left(a\right)\left(x-a\right)^{n}}
Então fazendo esta expansão e escrevendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t'=t+\Delta t}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y\left(t'\right) & =\sum_{n=0}^{\infty}\frac{y^{\left(n\right)}}{n!}\left(t\right)\left(t'-t\right)^{n}\\ & =y\left(t\right)+\Delta ty'\left(t\right)+\sum_{n=2}^{\infty}\frac{y^{\left(n\right)}}{n!}\left(t\right)\Delta^{n}\end{align}}
Podemos olhar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f^{\left(n\right)}\left(a\right)} com mais atenção uma vez que tecnicamente nosssa variável da função que estamos expandindo é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t'} .
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt'}y\left(t'\right)\approx\frac{y\left(t'+\Delta t'\right)-y\left(t'\right)}{\Delta t'}}
Considerando que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \Delta t} é constante, então: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \Delta t'=\Delta t} , e sendo o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a=t} , temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt'}y\left(t'\right)\approx\frac{y\left(t'+\Delta t\right)-y\left(t'\right)}{\Delta t}=\frac{d}{dt}f\left(t'\right)\longrightarrow\left.\frac{d}{dt}y\left(t'\right)\right|_{t'=t}=y'\left(t\right)}
De forma que ficamos então apenas com:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y\left(t+\Delta t\right) & =y\left(t\right)+f\left(t ,y \right) \Delta t+\sum_{n=2}^{\infty}\frac{y^{\left(n\right)}\left(t\right)}{n!}\Delta t^{n}\end{align}}
Os primeiros dois termos então correspondem ao método de Euler, e o somatório se torna o erro ao jogarmos fora. O menor grau que desprezamos é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle n=2} , então o erro local é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle Err\left(\Delta t\right)\propto\Delta t^{2}} . E como o número de passos é dado por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N=t/\Delta t} então após Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N} passos temos uma estimativa de erro global dada por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle Err\left(\Delta t,t\right)\propto N \cdot \Delta t^{2} } ou apenas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle Err\left(\Delta t,t\right)\propto\Delta t} . Cálculos mais detalhados da estimativa do erro podem ser encontrados em textos matemáticos[1].
Exemplo: SIR
O modelo SIR é um modelo de epidemia compartimental no qual separamos a população em três compartimentos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle S} : População suscetível
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle I} : População infectada
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle R} : População de recuperados
O modelo SIR é descrito então pelo seguinte conjunto de equações:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dS}{dt} & =-\beta SI\\ \frac{dI}{dt} & =\beta SI-\gamma I\\ \frac{dR}{dt} & =\gamma I\end{align}}
Onde temos as seguintes variáveis:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \beta} : transmissibilidade
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \gamma}
: taxa de recuperação
- É o inverso do tempo que a pessoa permanece infectada Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau=\frac{1}{\gamma}} .
Neste modelo, as pessoas podem se transferir entre os compartimento apenas em um sentido Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle S\rightarrow I\rightarrow R} , e pode-se destacar que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle R} comporta tanto pessoas que se curaram e tornaram-se imunes, quanto falecimentos, em todo, caso, são pessoas que não podem ser suscetíveis a infecção novamente. Como a população total Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle N} é constante, temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \dot{N}=0} e por conservação:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{S}+\dot{I}+\dot{R}=0}
Desta forma só precisamos resolver duas equações a cada passo. Além disso podemos considerar que a transmissibilidade de uma doença depende da população total, de forma que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \beta\left(N\right)=\widehat{\beta}/N} , sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \widehat{\beta}} um parâmetro próprio da doença e independente da população. Substituindo e reescrevendo cada compartimento como uma fração da população total, ao invés de números totais, isto é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x=X/N} , seja Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x} um compartimento qualquer, então podemos reescrever o sistema como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{ds}{dt} & =-\widehat{\beta}si\\ \frac{di}{dt} & =\widehat{\beta}si-\gamma i\\ \frac{dr}{dt} & =-\left(\frac{ds}{dt}+\frac{di}{dt}\right)\end{align}}
Um ponto interessante é a condição de epidemia. A segunda equação nos dá a variação de infectados, para termos epidemia precisamos que este valor positivo, isto é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{di}{dt}>0} , logo:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \left(\widehat{\beta}s-\gamma\right)i & >0\\ \widehat{\beta}s & >\gamma\\ \widehat{\beta}\tau & >\frac{1}{s}\end{align}}
Considerando como condição inicial que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle S\approx N} , isto é, praticamente toda população é suscetível, logo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle s=1} e temos então o seguinte limiar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \widehat{\beta}\tau\gtrapprox1} para uma condição inicial de epidêma. Podemos definir assim o número reprodutivo básico:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{0}\equiv\widehat{\beta}\tau>1}
Além disso, um modelo SIRS (no qual recuperados podem tornar-se suscetíveis novamente) e com atraso foi discutido aqui
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos b = 0.1 #Transmissibilidade tau = 11 #Tempo que a pessoa permanece infectada g = 1/tau#Taxa de recuperação N = 1000 #População total Np = 5000 #Número de passos dt = 0.5 #Intervalo de tempo #Valores iniciais i=[1/N]; s=[1-i[0]]; r=[0]; t=[0] T=[s[0]+i[0]+r[0]] #Total for it in range(Np): s.append(s[it]-dt*b*s[it]*i[it]) i.append(i[it]+dt*(b*s[it]*i[it]-g*i[it])) r.append(1-(i[it+1]+s[it+1])) t.append(dt+it*dt) T.append(s[it+1]+i[it+1]+r[it+1]) plt.plot(t,i) #Infectados plt.plot(t,s) #Suscetíveis plt.plot(t,r) #Recuperados plt.plot(t,T) #Total
Exemplo: Sistema massa-mola
Podemos escrever o problema geral da mecânica clássica como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d^{2}x}{dt^{2}}=f\left(x,v,t\right)}
O método de Euler é um método para equações de 1ª ordem, então transformando em um sistema de equações de primeira ordem, escrevendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{dx}{dt}=v} , temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} m\frac{dv}{dt} & =f\left(x,v,t\right)\\ \frac{dx}{dt} & =v\left(t\right)\end{align}}
E pela segunda lei de Newton Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f=ma} , então ficamos simplesmente com:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dv}{dt} & =a\left(t\right)\\ \frac{dx}{dt} & =v\left(t\right)\end{align}}
E aplicando o método de Euler:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} v\left(t+\Delta t\right) & =v\left(t\right)+a\left(t\right)\Delta t\\ x\left(t+\Delta t\right) & =x\left(t\right)+v\left(t\right)\Delta t\end{align}}
Agora tendo a lei de Hooke:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d^{2}x}{dt^{2}}=-kx}
E reescrevendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \omega^{2}=\frac{k}{m}} , temo que:
Onde . Então o método de Euler fica:
A solução analítica do sistema é dada por:
Onde podemos ver que a energia e conserva:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=V+T=\frac{1}{2}kx\left(t\right)^{2}+\frac{1}{2}mv\left(t\right)^{2}}
Sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle v\left(0\right)=0} , então:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=\frac{1}{2}kx_{0}^{2}=\text{constante}}
import matplotlib.pyplot as plt #Biblioteca para plotar gráficos Np = 200000 #Número de passos dt = 0.001 #Intervalo de tempo m=1 ; k= 1.; w2= k/m #Constantes x=[1]; v=[0]; t=[0]; E=[k*(x[0]**2)/2+m*(v[0]**2)/2] #Valores iniciais #Método de Euler for it in range(Np): x.append(x[it]+dt*v[it]) v.append(v[it]-dt*x[it]*w2) E.append(k*x[it+1]**2/2+m*v[it+1]**2/2) t.append(dt+it*dt) plt.plot(t,x) #Posição plt.plot(t,v) #Velocidade plt.plot(t,E) #Energia
Exemplo: Modelo de Lotka Volterra
Além disso temos uma discussão sobre o Modelo de Lotka-Volterra e também sobre Modelo de Lotka-Volterra amortecido, que além da discussão apresenta uma solução numérica utilizando o Método de Euler, com a única diferença de um termo de amortecimento. Uma vez que zerarmos este termo, retornamos ao Modelo de Lotka-Volterra clássico.
Citações
- ↑ Euler's Method (William F. Trench, LibreTexts)
Principais materiais utilizados
- Erro de truncamento (REAMAT, UFRGS)
- Euler's Method (Paul Dawkins, Universidade Lamar)
- Forward and Backward Euler Methods (Michael Zeltkevic, Instituto de Tecnologia de Massachusetts)
- Método de Euler (REAMAT, UFRGS)