Modelo de Levins aprimorado para 2 espécies II: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
 
Linha 130: Linha 130:
</pre>Onde a análise do ponto de equilíbrio <math>n</math> pode ser obtida por:<pre>
</pre>Onde a análise do ponto de equilíbrio <math>n</math> pode ser obtida por:<pre>
n = 2;
n = 2;
MA = M /. sol[[n]] /. parametros(*/.h\[Rule]0.5*);
MA = M /. sol[[n]] /. parametros;
P = CharacteristicPolynomial[MA, l]
P = CharacteristicPolynomial[MA, l]
Roots[P == 0, l]
Roots[P == 0, l]

Edição atual tal como às 20h37min de 26 de junho de 2021

Anterior: Modelo de Levins aprimorado para 2 espécies I | Índice: Ecologia | Próximo: Modelo espacialmente explícito para 2 espécies

Original

O artigo Waves of desertification in a competitive ecosystem propõe o seguinte modelo de campo médio para representar o mesmo contexto ecológico discutido no Modelo espacialmente explícito para 2 espécies:Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}_{1} & =c_{1}\left(h-x_{1}\right)x_{1}-e_{1}x_{1}\end{align}} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}_{2} & =c_{2}\left(h-x_{1}-x_{2}\right)x_{2}-e_{2}x_{2}\end{align}} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{h}=-\gamma x_{2}\left(t-\tau_{0}\right)h\left(t-\tau_{0}\right)+\gamma x_{2}\left(t-\tau_{0}-\tau_{r}\right)h\left(t-\tau_{0}-\tau_{r}\right)}


Denotando a equação com atraso Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f_{\tau}\left(t-\tau\right)} e sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau=\tau_{0}+\tau_{r}} então ainda podemos reescrever a última equação como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{h}=-\gamma x_{2\tau_{0}}h_{\tau_{0}}+\gamma x_{2\tau}h_{\tau}}

Podemos ver que há 2 termos para a dinâmica dos fragmentos disponíveis. Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau_{0}} é o tempo que um fragmento ocupado leva para ser deteriorado, por isso o primeiro termo busca quantificar os fragmentos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h\left(t\right)} que estavam ocupados pela espécie Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t\right)} em um tempo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau_{0}} anterior, deste modo, no instante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t} estes fragmentos se deterioram representando uma decréscimo nos fragmentos disponíveis. De maneira análoga, o segundo termo busca os fragmentos que estavam ocupados em um instante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau=\tau_{0}+\tau_{r}} anterior, pois passado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau_{r}} após a deterioração, o fragmento se recupera e representa um aumento nos fragmentos disponíveis.

Considerando que no ponto de equilíbrio temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f=f_{\tau}=f_{\tau_{0}}} , logo obtém-se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \dot{h}=0} . Pois o mesmo fragmento que é deteriorado em um instante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t+\tau_{0}} é recuperado em um instante posterior Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t+\tau_{0}+\tau_{r}} . Sendo assim, o ponto de equilíbrio final irá depender da fração Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h\left(t\right)=h_{c}} no momento em que o equilíbrio é atingido. Porém qual é exatamente este valor Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h\left(t\right)=h_{c}} não parece ser possível de ser obtido de maneira analítica. Considerando um termo constante arbitrário Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h_{c}=h} no equilíbrio tem-se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{x}=0 } , então o sistema reduz-se a:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} 0= & c_{1}\left(h-x_{1}\right)x_{1}-e_{1}x_{1}\\ 0= & c_{2}\left(h-x_{1}-x_{2}\right)x_{2}-e_{2}x_{2}\end{align}}

Esse sistema possui 4 soluções possíveis:

  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)\rightarrow} Nenhum animal sobrevive
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(h-\frac{e_{1}}{c_{1}},0\right)\rightarrow} Apenas guanacos sobrevivem
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,h-\frac{e_{2}}{c_{2}}\right)\rightarrow} Apenas ovelhas sobrevivem
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(h-\frac{e_{1}}{c_{1}},\frac{e_{1}}{c_{1}}-\frac{e_{2}}{c_{2}}\right)\rightarrow} Ambos sobrevivem

Continuando a análise deste conjunto de equações, mas lembrando que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h} é um valor que vai ser definido pela evolução do sistema e que não temos ferramentas aqui para prever qual será exatamente o ponto de equilíbrio. Linearizando através da matriz jacobiana, onde denotamos um ponto de equilíbrio qualquer por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{1}^{*},x_{2}^{*}\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}_{1}\\ \dot{x}_{2} \end{array}\right)=\left.\left(\begin{array}{cc} -e_{1}+c_{1}\left(h-x_{1}\right)-c_{1}x_{1} & 0\\ -c_{2}x_{2} & -e_{2}+c_{2}\left(h-x_{1}-x_{2}\right)-c_{2}x_{2} \end{array}\right)\right|_{\left(x_{1}^{*},x_{2}^{*}\right)}\left(\begin{array}{c} x_{1}\\ x_{2} \end{array}\right)}

Solução do sistema de equações diferenciais originalmente proposto para a seguinte condição inicial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(x_{10},x_{20},h_{0}\right)=\left(0.3,0.3,1.\right)} .

Com o auxílio do Mathematica e considerando o conjunto de parâmetros definidos originalmente no artigo, temos as seguintes equações características dependendo de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h} para cada ponto de equilíbrio:

  1. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l^{2}+\left(0.066h\right)l+\left(-0.028h^{2}+0.0074h-0.0001\right)=0}
  2. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l^{2}+\left(0.155+0.04h \right)l+\left(0.0066h-0.00165\right)=0}
  3. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l^{2}+\left(0.02-0.74h\right)l+\left(0.028h^{2}-0.0074h+0.0001\right)=0}
  4. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l^{2}+\left(0.04h-0.175\right)l+\left(-0.0066h+0.00165\right)=0}

Podemos ver que são polinômios do segundo grau, e lembrando que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h\in\left[0,1\right]} é um número real, temos os seguintes autovalores (ou raízes):

  1. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l=-0.5\left(\sqrt{0.5476h^{2}+0.0004-0.0296h}+0.66h\right)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l=0.5\left(\sqrt{0.5476h^{2}+0.0004-0.0296h}-0.66h\right)}
  2. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l=-0.5\left(\sqrt{0.0016h^{2}-0.014h+0.030625}+0.04h+0.155\right)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l=0.5\left(\sqrt{0.0016h^{2}-0.014h+0.030625}-0.04h-0.155\right)}
  3. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l\approx0.04h-0.01} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l\approx0.7-0.01}
  4. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l=0.5\left(0.175-\sqrt{0.0016h^{2}+0.0124h+0.024025}-0.04h\right)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle l=0.5\left(\sqrt{0.0016h^{2}+0.0124h+0.024025}+0.175-0.04h\right)}

É importante perceber que as raízes são sempre reais. Então variando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} , obtém-se as seguintes situações:

  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h<0.125} : Nenhum animal sobrevive
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle 0.125<h<0.25} : Apenas ovelha sobrevive
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h>0.25} : guanacos e ovelha sobrevivem

Podemos perceber que a condição que apenas o guanaco sobrevive nunca é um ponto de equilíbrio estável. No máximo um ponto de cela, e concordando com os outros modelos discutidos anteriormente, os guanacos são mais sensíveis a destruição do meio ambiente.

  • Observação: de certa forma todas essas análise sobre o comportamento do sistema entorno dos pontos de equilíbrio é“inútil”. Pois ela parte do pressuposto de que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle h\left(t\right)=h} é constante, o que não temos meios de confirmar que corresponde a realidade e nem de identificar qual é o valor, mesmo que seja.

Modificado

Inserindo um termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x_{1}x_{2}} na equação de com o mesmo argumento utilizado no Modelo de Levins aprimorado para 3 espécies baseado em conceitos de probabilidade e teoria dos conjuntos, ficamos com o seguinte sistema:

Solução do sistema de equações diferenciais modificadas para a seguinte condição inicial .

A solução numérica deste sistema considerando as condições iniciais de forma semelhante com o que foi feito no SIRS revela uma solução oscilatória conforme foi encontrado no modelo espacialmente equivalente. Poderíamos repetir a análise feita para o sistema anterior acerca dos pontos de equilíbrio ou até tentar se aprofundar mais, mas a verdade é que as equações diferenciais com atraso são significativamente mais complexas de serem analisadas que equações diferenciais sem atraso. E não parece que essa camada de complexidade adicional melhore os resultados o suficiente para ser justificado no momento. Conforme destacado não só no artigo no qual este trabalho se baseou, os modelos espacialmente explícitos são ferramentas mais valiosas que o sistemas de equações[1], pois se aproximam melhor das situações reais. Sendo assim, não me aprofundarei na análise deste sistema.

Códigos

O código utilizado para a solução dos sistemas de equações diferenciais foi feito em Python utilizando o método numérico de Euler:


# Solução do sistema de equações diferenciais com atraso para 2 espécies com dinâmica dos fragmentos disponíveis
# Jhordan Silveira de Borba
# sbjhordan@gmail.com

import numpy as np  # Biblioteca para o cálculo científico
#Parâmetros da dinâmica
c1=0.04
c2=0.7
e1=0.01
e2=0.01
g=0.1
tr=10
to=50
t=tr+to
# Listas para guardar a evolução do sistema
x1=[]
x2=[]
h=[]
d=0.001 #Passo para o método de Euler
#Primeira parte:
N1=int(to/d)     #Quantidade de passos
x1.append(0.3)  #Condição inicial de guanacos
x2.append(0.3)  #Condição inicial de pumas
h.append(1.)     #Condição inicial de fragmentos disponíveis
#Resolve o sistema Usando o método de Euler
for k in range(N1):
    x1.append(x1[k]+d*(c1*(h[0]-x1[k]      )*x1[k]-e1*x1[k]))
    x2.append(x2[k]+d*(c2*(h[0]-x1[k]-x2[k]+x1[k]*x2[k])*x2[k]-e2*x2[k]-x1[k]*x2[k]*c1))
    h.append(h[0])    
#Segunda parte
N2=int(t/d)
for k in range(N1,N2):
    x1.append(x1[k]+d*(c1*(h[k]-x1[k]      )*x1[k]-e1*x1[k]))
    x2.append(x2[k]+d*(c2*(h[k]-x1[k]-x2[k]+x1[k]*x2[k])*x2[k]-e2*x2[k]-x1[k]*x2[k]*c1))
    h.append(h[k]+d*(-g*x2[k-int(to/d)]*h[k-int(to/d)]))
#Terceira parte
N3=int(1000/d)
for k in range(N2,N3):
    x1.append(x1[k]+d*(c1*(h[k]-x1[k]      )*x1[k]-e1*x1[k]))
    x2.append(x2[k]+d*(c2*(h[k]-x1[k]-x2[k]+x1[k]*x2[k])*x2[k]-e2*x2[k]-x1[k]*x2[k]*c1))
    h.append(h[k]+d*(-g*x2[k-int(to/d)]*h[k-int(to/d)]+g*x2[k-int(t/d)]*h[k-int(t/d)]))

E o sistema de equações pode ser analisado via Mathematica utilizando:

parametros = {c1 -> 0.04, c2 -> 0.7, e1 -> 0.01, e2 -> 0.01, tr -> 10,
    to -> 50, g -> 0.1};
dx1 = (c1* x1 (h - x1) - e1 x1);
dx2 = (c2 x2 (h - x1 - x2) - e2 x2);
sol = Solve[dx1 == 0 && dx2 == 0, {x1, x2}];
M = {{D[dx1, x1], D[dx1, x2]}, {D[dx2, x1], D[dx2, x2]}};

Onde a análise do ponto de equilíbrio pode ser obtida por:

n = 2; MA = M /. sol[[n]] /. parametros; P = CharacteristicPolynomial[MA, l] Roots[P == 0, l]

Principal material utilizado

  1. Waves of desertification in a competitive ecosystem (Y. C. Daza C. e outros, Ecological Modelling)

Referências


Anterior: Modelo de Levins aprimorado para 2 espécies I | Índice: Ecologia | Próximo: Modelo espacialmente explícito para 2 espécies