Modelo de Lotka-Volterra: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
(Criou página com 'No modelo de Lotka-Volterra temos as seguintes considerações: *Na ausência de predadores, a população de presas aumenta a uma taxa proporcional à população atual; *Na...')
 
Sem resumo de edição
(8 revisões intermediárias pelo mesmo usuário não estão sendo mostradas)
Linha 1: Linha 1:
{{Ecologia| [[Modelos Logísticos]] |[[Modelo de Lotka-Volterra amortecido]]}}
No modelo de Lotka-Volterra temos as seguintes considerações:
No modelo de Lotka-Volterra temos as seguintes considerações:


Linha 19: Linha 21:


=== Separação de variáveis ===
=== Separação de variáveis ===
Por separações de variáveis:
Utilizando a separação de variáveis, temos:


<math display="block">\frac{dy}{dt}\frac{dt}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math>
<math display="block">\frac{dy}{dt}\frac{dt}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math>


logo:
Logo:


<math display="block">\frac{dy}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math><math display="block">\frac{\left(a-\alpha y\right)}{y}dy=\frac{\left(-c+\gamma x\right)}{x}dx</math><math display="block">\left(\frac{a}{y}-\alpha\right)dy=\left(-\frac{c}{x}+\gamma\right)dx</math>Integrando ambos os lados, temos:
<math display="block">\frac{dy}{dx}=\frac{y\left(-c+\gamma x\right)}{x\left(a-\alpha y\right)}</math><math display="block">\frac{\left(a-\alpha y\right)}{y}dy=\frac{\left(-c+\gamma x\right)}{x}dx</math><math display="block">\left(\frac{a}{y}-\alpha\right)dy=\left(-\frac{c}{x}+\gamma\right)dx</math>Integrando ambos os lados:


<math display="block">a\ln y-\alpha y=-c\ln x+\gamma x+C</math><math display="block">a\ln y-\alpha y+c\ln x-\gamma x=C</math>
<math display="block">a\ln y-\alpha y=-c\ln x+\gamma x+C</math><math display="block">a\ln y-\alpha y+c\ln x-\gamma x=C</math>


Onde <math display="inline">C</math> é uma constante de integração. Para plotarmos um gráfico, considerando apenas <math display="inline">a=\alpha=\gamma=c=1</math> Temos então:
Onde <math display="inline">C</math> é uma constante de integração. Para plotarmos um gráfico, considerando apenas <math display="inline">a=\alpha=\gamma=c=1</math> Temos então:
Linha 34: Linha 35:
<math display="block">\ln y+\ln x-\left(x+y\right)=C</math>
<math display="block">\ln y+\ln x-\left(x+y\right)=C</math>


Retornando as equações de Lotka-Volterra, podemos ver que o equilíbrio é alcançado, com os nossos parâmetros, quando:
Um ponto de equilíbrio fora da origem é obtido quando:


<math display="block">\frac{dx}{dt}=x\left(a-\alpha y\right)=0\rightarrow y=\frac{a}{\alpha}=1</math><math display="block">\frac{dy}{dt}=y\left(-c+\gamma x\right)=0\rightarrow x=\frac{c}{\gamma}=1</math>
<math display="block">\frac{dx}{dt}=x\left(a-\alpha y\right)=0\rightarrow y=\frac{a}{\alpha}=1</math><math display="block">\frac{dy}{dt}=y\left(-c+\gamma x\right)=0\rightarrow x=\frac{c}{\gamma}=1</math>


Então neste caso, o sistema oscila em torno de <math display="inline">\left(1,1\right)</math>  e a constante <math display="inline">C</math> é definida pelas condições iniciais <math display="inline">\left(x_{0},y_{0}\right)</math>. Nós temos que quando <math display="inline">x_{0}=y_{0}=1</math>, então:
Então neste caso, o sistema oscila em torno de <math display="inline">\left(1,1\right)</math>  e a constante <math display="inline">C</math> é definida pelas condições iniciais <math display="inline">\left(x_{0},y_{0}\right)</math>. Para a condição em que <math display="inline">x_{0}=y_{0}=1</math>, então:


<math display="block">\ln1+\ln1-\left(1+1\right)=C</math><math display="block">-2=C</math>
<math display="block">\ln1+\ln1-\left(1+1\right)=C</math><math display="block">-2=C</math>
Linha 44: Linha 45:
Então para este conjunto de parâmetros e condições iniciais: <math display="block">\ln y+\ln x-\left(x+y\right)+2=0</math>
Então para este conjunto de parâmetros e condições iniciais: <math display="block">\ln y+\ln x-\left(x+y\right)+2=0</math>


Neste caso o sistema vai permanecer no ponto de equilíbrio, para outras condições iniciais, o sistema vai oscilar em torno do ponto de equilíbrio.  
Neste caso o sistema vai permanecer no ponto de equilíbrio. Para outras condições iniciais, o sistema vai oscilar em torno do ponto de equilíbrio. Obviamente além do ponto <math display="inline">\left(1,1\right)</math>, temos um ponto de equilíbrio em <math display="inline">\left(0,0\right)</math>. Vamos analisar a dinâmica na vizinhança dos pontos através de um processo simples de linearização.  
 
[[Ficheiro:Plot Lotka-Volterra.png|borda|miniaturadaimagem|<math>f\left(x,y\right)=\ln y+\ln x-\left(x+y\right)-C</math> com as condições  <math>a=\alpha=c=\gamma=1</math>  e condição inicial arbitrária.|alt=]]
Obviamente além do ponto <math display="inline">\left(1,1\right)</math>, temos um ponto de equilíbrio em <math display="inline">\left(0,0\right)</math>. Vamos analisar a dinâmica na vizinhança dos pontos através de um processo simples de linearização.  


[[Ficheiro:Plot Lotka-Volterra.png|borda|miniaturadaimagem|<math>f\left(x,y\right)=\ln y+\ln x-\left(x+y\right)-C</math> com as condições  <math>a=\alpha=c=\gamma=1</math>  e condição inicial arbitrária, plotado no [https://www.geogebra.org/ GeoGebra].|alt=]]
=== Linearização em torno do ponto de equilíbrio ===
=== Linearização em torno do ponto de equilíbrio ===
Primeiro podemos perceber que o sistema é quase-linear em torno de <math display="inline">\left(0,0\right)</math>, verificando que satisfaz:
Primeiro podemos perceber que o sistema é quase-linear em torno de <math display="inline">\left(0,0\right)</math>, verificando que satisfaz:
Linha 79: Linha 78:




Os seguintes autovalores <math display="inline">\lambda=\left\{ a,-c\right\}</math>. Como um dos valores tem parte real positiva, então é um ponto instável, especificamente devido aos sinais opostos é um ponto de sela. Como é instável significa que se a condição inicial for próxima de <math display="inline">\left(0,0\right)</math>, a evolução do sistema vai se afastar do ponto de equilíbrio. Essa aproximação também indica que próximo do ponto de equilíbrio, a dinâmica pode ser descrita tanto pelo conjunto de equações não lineares, como pelo sistema linear.
os seguintes autovalores <math display="inline">\lambda=\left\{ a,-c\right\}</math>. Como um dos valores tem parte real positiva, então é um ponto instável, especificamente devido aos sinais opostos é um ponto de sela. Como é instável significa que se a condição inicial for próxima de <math display="inline">\left(0,0\right)</math>, a evolução do sistema vai se afastar do ponto de equilíbrio. Essa aproximação também indica que próximo do ponto de equilíbrio, a dinâmica pode ser descrita tanto pelo conjunto de equações não lineares, como pelo sistema linear.


Agora o segundo ponto de equilíbrio, de maneira geral é <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>. Primeiro reescrevemos o sistema em torno do ponto de equilíbrio, isto é, fazemos um deslocamento <math display="inline">u=x-\frac{c}{\gamma}</math> e <math display="inline">v=y-\frac{a}{\alpha}</math>. Então temos <math display="inline">dx=du</math> e <math display="inline">dv=dy</math> e substituindo, para <math display="inline">\dot{x}</math>:<math display="block">\frac{du}{dt}=\left(u+\frac{c}{\gamma}\right)a-\alpha\left(u+\frac{c}{\gamma}\right)\left(v+\frac{a}{\alpha}\right)</math><math display="block">\frac{du}{dt}=ua+\frac{c}{\gamma}a-\alpha uv-\frac{\alpha c}{\gamma}v-ua-\frac{ca}{\gamma}</math><math display="block">\frac{du}{dt}=-\alpha uv-\frac{\alpha c}{\gamma}v</math>E para <math display="inline">\dot{y}</math>:
Agora o segundo ponto de equilíbrio, de maneira geral é <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>. Primeiro reescrevemos o sistema em torno do ponto de equilíbrio, isto é, fazemos um deslocamento <math display="inline">u=x-\frac{c}{\gamma}</math> e <math display="inline">v=y-\frac{a}{\alpha}</math>. Então temos <math display="inline">dx=du</math> e <math display="inline">dv=dy</math> e substituindo, para <math display="inline">\dot{x}</math>:<math display="block">\frac{du}{dt}=\left(u+\frac{c}{\gamma}\right)a-\alpha\left(u+\frac{c}{\gamma}\right)\left(v+\frac{a}{\alpha}\right)</math><math display="block">\frac{du}{dt}=ua+\frac{c}{\gamma}a-\alpha uv-\frac{\alpha c}{\gamma}v-ua-\frac{ca}{\gamma}</math><math display="block">\frac{du}{dt}=-\alpha uv-\frac{\alpha c}{\gamma}v</math>E para <math display="inline">\dot{y}</math>:
Linha 99: Linha 98:


<math display="block">-\lambda^{2}-\frac{\gamma a}{\alpha}\frac{\alpha c}{\gamma}=0</math><math display="block">\lambda=\pm\sqrt{-ac}=\pm\sqrt{ac}i</math>
<math display="block">-\lambda^{2}-\frac{\gamma a}{\alpha}\frac{\alpha c}{\gamma}=0</math><math display="block">\lambda=\pm\sqrt{-ac}=\pm\sqrt{ac}i</math>


Como temos raízes puramente imaginárias e <math display="inline">\lambda_{1}=\lambda_{2}^{*}</math>, temos um centro, ponto de estabilidade. Isto é, se a condição inicial for próxima de <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math> o sistema evoluirá de forma que o estado do sistema permanecerá próximo do ponto de equilíbrio.
Como temos raízes puramente imaginárias e <math display="inline">\lambda_{1}=\lambda_{2}^{*}</math>, temos um centro, ponto de estabilidade. Isto é, se a condição inicial for próxima de <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math> o sistema evoluirá de forma que o estado do sistema permanecerá próximo do ponto de equilíbrio.


<div class="center">[[Ficheiro:Tabela de autovaloes.png|miniaturadaimagem|Classificação dos pontos de estabilidade de acordo com os autovalores<ref>[http://www.sel.eesc.usp.br/lac/disciplinas/sels/arquivos/sel364/private/aula1a2cnl.pdf Análise de sistemas não-lineares] (Vilma A. Oliveira e José Ricardo Rosolen, USP)</ref>.]]</div>
<div class="center">[[Ficheiro:Tabela de autovaloes.png|miniaturadaimagem|Classificação dos pontos de estabilidade de acordo com os autovalores<ref>[http://www.sel.eesc.usp.br/lac/disciplinas/sels/arquivos/sel364/private/aula1a2cnl.pdf Análise de sistemas não-lineares] (Vilma A. Oliveira e José Ricardo Rosolen, USP)</ref>.|300x300px]]</div>


=== Segundo método de Lyapunov ===
=== Segundo método de Lyapunov ===
Utilizando o segundo método de Lyapunov então para o segundo ponto de equilíbrio <math display="inline">\left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math> podemos manipular:
Para avaliar o ponto <math display="inline">\left(x_{1},y_{1}\right)=\left(0,0\right)</math>, podemos usar de maneira análoga ao [[Métodos de Lyapunov|exemplo do segundo critério de Lyapunov]]:
 
<math display="block">V\left(\boldsymbol{x}\right)=\frac{x^{2}}{\alpha}-\frac{y^{2}}{\gamma}</math>
 
Como já discutimos  <math display="inline">V\left(\boldsymbol{x}_{0}\right)=0</math> e a região <math display="inline">W^{+}\left\{ \left(x,y\right)|\left|x\right|>\left|y\right|\right\}</math> onde <math display="inline">V\left(\boldsymbol{x}\right)>0</math> para <math display="inline">\boldsymbol{x}\neq\boldsymbol{x}_{0}</math> , sendo <math display="inline">\boldsymbol{x}_{0}</math> um ponto de acumulação em <math display="inline">W^{+}</math><ref>[http://www.dii.unimo.it/~zanasi/didattica/Teoria_dei_Sistemi/Luc_TDS_ING_2016_Stability_Analysis_of_Nonlinear_Systems.pdf Stability Analysis of Nonlinear Systems] (Roberto Zanasi, Universidade de Módena e Reggio Emília)</ref>. Então:
 
<math display="block">\begin{align}
\dot{V}\left(\boldsymbol{x}\right) & =\left[\nabla V\right]\cdot\left[\boldsymbol{f}\left(\boldsymbol{x}\right)\right]\\
& =\left(\frac{2x}{\alpha},-\frac{2y}{\gamma}\right)\left(\dot{x},\dot{y}\right)\\
& =2x^{2}\frac{a}{\alpha}-2x^{2}y+2y^{2}\frac{c}{\gamma}-2y^{2}x\\
& =2x^{2}\left(\frac{a}{\alpha}-y\right)+2y^{2}\left(\frac{c}{\gamma}-x\right)\end{align}</math>Lembrando do nosso segundo ponto de equilíbrio <math display="inline">\left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>:
 
<math display="block">\dot{V}\left(\boldsymbol{x}\right)=2x^{2}\left(y_{2}-y\right)+2y^{2}\left(x_{2}-x\right)</math>
 
 
Então se estamos próximos suficiente do ponto de equilíbrio em análise <math display="inline">\left(x_{1},y_{1}\right)=\left(0,0\right)</math>, temos então uma instabilidade local pois <math display="inline">\dot{V}\left(\boldsymbol{x}\right)>0</math> é positivo definido em <math display="inline">W^{+}</math>,  uma vez que <math display="inline">\left|y\right|<\left|y_{2}\right|</math> , <math display="inline">\left|x\right|<\left|x_{2}\right|</math>.  Olhando o segundo ponto de equilíbrio, <math display="inline">\left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>, podemos manipular as equações da seguinte forma:


*<math display="inline">\frac{dx}{dt}=x\left(a-\alpha y\right)=x\alpha\left(\frac{a}{\alpha}-y\right)=x\alpha\left(y_{2}-y\right)</math>
*<math display="inline">\frac{dx}{dt}=x\left(a-\alpha y\right)=x\alpha\left(\frac{a}{\alpha}-y\right)=x\alpha\left(y_{2}-y\right)</math>
Linha 128: Linha 141:
  & =V\left(x\right)+\frac{\alpha}{\gamma}V\left(y\right)\end{align}</math>
  & =V\left(x\right)+\frac{\alpha}{\gamma}V\left(y\right)\end{align}</math>


De forma geral temos <math display="inline">V\left(z\right)=z-z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right)</math>, e precisamos que <math display="inline">V\left(z\right)>0</math> quando <math display="inline">z\neq z_{2}</math>. Isso é facilmente visto via gráfico para todos os valores aceitáveis <math display="inline">z,z_{2}\in\left[0,1\right]</math>. Ou também analisando a seguinte desigualdade:
De forma geral temos <math display="inline">V\left(z\right)=z-z_{2}\left(1+\ln\left(\frac{z}{z_{2}}\right)\right)</math>, e precisamos que <math display="inline">V\left(z\right)>0</math> quando <math display="inline">z\neq z_{2}</math>. Além de ser facilmente visto via gráfico para todos os valores aceitáveis <math display="inline">z,z_{2}\in\left[0,1\right]</math>, também podemos analisar a seguinte desigualdade:


<math display="block">\begin{align}
<math display="block">\begin{align}
Linha 135: Linha 148:
\frac{z}{z_{2}} & >1+\ln\left(\frac{z}{z_{2}}\right)\\
\frac{z}{z_{2}} & >1+\ln\left(\frac{z}{z_{2}}\right)\\
e^{\frac{z}{z_{2}}} & >e\frac{z}{z_{2}}\\
e^{\frac{z}{z_{2}}} & >e\frac{z}{z_{2}}\\
e^{x} & >ex\end{align}</math>Podemos ver quer o único valor que essa desigualdade não vale é quando <math display="inline">x=1</math> mas como <math display="inline">x=\frac{z}{z_{2}}</math> então <math display="inline">x=1\rightarrow z=z_{2}</math>, e de fato que queremos que seja positiva definida fora do ponto de equilíbrio. Uma vez que sabemos que <math display="inline">V\left(x,y\right)</math> é positivo definido, calculamos então:
e^{u} & >eu\end{align}</math>Podemos ver quer a desigualdade desigualdade é válida exceto se <math display="inline">x=1</math>. Mas como fizemos a seguinte substituição <math display="inline">u=\frac{z}{z_{2}}</math> então <math display="inline">u=1\rightarrow z=z_{2}</math>, e de fato que queremos que seja positiva definida fora do ponto de equilíbrio. Uma vez que sabemos que <math display="inline">V\left(x,y\right)</math> é positivo definido, calculamos então:


<math display="block">\begin{align}
<math display="block">\begin{align}
Linha 144: Linha 157:
  & =\left(\frac{x-x_{2}}{x}\right)\left(x\alpha\left(y_{2}-y\right)\right)+\frac{\alpha}{\gamma}\left(\frac{y-y_{2}}{y}\right)\left(y\gamma\left(-x_{2}+x\right)\right)\end{align}</math>
  & =\left(\frac{x-x_{2}}{x}\right)\left(x\alpha\left(y_{2}-y\right)\right)+\frac{\alpha}{\gamma}\left(\frac{y-y_{2}}{y}\right)\left(y\gamma\left(-x_{2}+x\right)\right)\end{align}</math>


Então:<math display="block">\dot{V}\left(\boldsymbol{x}\right)=\alpha\left(x-x_{2}\right)\left(y_{2}-y\right)-\alpha\left(y_{2}-y\right)\left(x-x_{2}\right)=0</math>Temos então a condição de estabilidade <math display="inline">\dot{V}\geq0</math> concordando como que já havíamos obtidos anteriormente.E para avaliar o ponto <math display="inline">\left(x_{1},y_{1}\right)=\left(0,0\right)</math>, podemos usar de maneira análoga ao [[Métodos de Lyapunov|exemplo do segundo critério de Lyapunov]]:
Então:<math display="block">\dot{V}\left(\boldsymbol{x}\right)=\alpha\left(x-x_{2}\right)\left(y_{2}-y\right)-\alpha\left(y_{2}-y\right)\left(x-x_{2}\right)=0</math>Temos então a condição de estabilidade <math display="inline">\dot{V}\leq0</math> concordando como que já havíamos obtidos anteriormente.
 
<math display="block">V\left(\boldsymbol{x}\right)=\frac{x^{2}}{\alpha}-\frac{y^{2}}{\gamma}</math>
 
Como já discutimos  <math display="inline">V\left(\boldsymbol{x}_{0}\right)=0</math> e a região <math display="inline">W^{+}\left\{ \left(x,y\right)|\left|x\right|>\left|y\right|\right\}</math> onde <math display="inline">V\left(\boldsymbol{x}\right)>0</math> para <math display="inline">\boldsymbol{x}\neq\boldsymbol{x}_{0}</math> , sendo <math display="inline">\boldsymbol{x}_{0}</math> um ponto de acumulação em <math display="inline">W^{+}</math><ref>[http://www.dii.unimo.it/~zanasi/didattica/Teoria_dei_Sistemi/Luc_TDS_ING_2016_Stability_Analysis_of_Nonlinear_Systems.pdf Stability Analysis of Nonlinear Systems] (Roberto Zanasi, Universidade de Módena e Reggio Emília)</ref>. Então:
 
<math display="block">\begin{align}
\dot{V}\left(\boldsymbol{x}\right) & =\left[\nabla V\right]\cdot\left[\boldsymbol{f}\left(\boldsymbol{x}\right)\right]\\
& =\left(\frac{2x}{\alpha},-\frac{2y}{\gamma}\right)\left(\dot{x},\dot{y}\right)\\
& =2x^{2}\frac{a}{\alpha}-2x^{2}y+2y^{2}\frac{c}{\gamma}-2y^{2}x\\
& =2x^{2}\left(\frac{a}{\alpha}-y\right)+2y^{2}\left(\frac{c}{\gamma}-x\right)\end{align}</math>Lembrando do nosso segundo ponto de equilíbrio <math display="inline">\left(x_{2},y_{2}\right)=\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)</math>:
 
<math display="block">\dot{V}\left(\boldsymbol{x}\right)=2x^{2}\left(y_{2}-y\right)+2y^{2}\left(x_{2}-x\right)</math>


=== Solução numérica ===


Então se estamos próximos suficiente do ponto de equilíbrio em análise <math display="inline">\left(x_{1},y_{1}\right)=\left(0,0\right)</math>, temos então uma instabilidade local pois <math display="inline">\dot{V}\left(\boldsymbol{x}\right)>0</math> é positivo definido em <math display="inline">W^{+}</math>,  uma vez que <math display="inline">\left|y\right|<\left|y_{2}\right|</math> , <math display="inline">\left|x\right|<\left|x_{2}\right|</math>.
Um exemplo resolvido numericamente pode ser visto em [[Modelo de Lotka-Volterra amortecido]], onde foi aproveitado os códigos desenvolvidos para este mesmo.


=== Principais materiais utilizados ===
=== Principais materiais utilizados ===
Linha 170: Linha 172:
=== Citações ===
=== Citações ===
<references />
<references />
{{Ecologia| [[Modelos Logísticos]] |[[Modelo de Lotka-Volterra amortecido]]}}

Edição das 21h51min de 2 de maio de 2021

Anterior: Modelos Logísticos | Índice: Ecologia | Próximo: Modelo de Lotka-Volterra amortecido

No modelo de Lotka-Volterra temos as seguintes considerações:

  • Na ausência de predadores, a população de presas aumenta a uma taxa proporcional à população atual;
  • Na ausência de presas, os predadores irão à extinção;
  • O número de encontro entre presas e predadores é proporcional a produto das duas populações.
    • Estes encontros beneficiam os predadores em detrimento das presas.

Dessa forma, as equações são:

Onde:

  • taxa de crescimento de presas sem predadores;
  • taxa de decréscimo da população de presas devido a predação;
  • taxa de mortalidade da população de predadores sem presas;
  • : taxa de crescimento de predadores devido a predação.

Separação de variáveis

Utilizando a separação de variáveis, temos:

Logo:

Integrando ambos os lados:

Onde é uma constante de integração. Para plotarmos um gráfico, considerando apenas Temos então:

Um ponto de equilíbrio fora da origem é obtido quando:

Então neste caso, o sistema oscila em torno de e a constante é definida pelas condições iniciais . Para a condição em que , então:

Então para este conjunto de parâmetros e condições iniciais:

Neste caso o sistema vai permanecer no ponto de equilíbrio. Para outras condições iniciais, o sistema vai oscilar em torno do ponto de equilíbrio. Obviamente além do ponto , temos um ponto de equilíbrio em . Vamos analisar a dinâmica na vizinhança dos pontos através de um processo simples de linearização.

com as condições e condição inicial arbitrária, plotado no GeoGebra.

Linearização em torno do ponto de equilíbrio

Primeiro podemos perceber que o sistema é quase-linear em torno de , verificando que satisfaz:

Então lembrando as equações:

Logo:

Desprezando então os termos não lineares podemos escrever o seguinte sistema linearizado em torno da origem:

Calculando os autovalores da matriz, obtemos então:


os seguintes autovalores . Como um dos valores tem parte real positiva, então é um ponto instável, especificamente devido aos sinais opostos é um ponto de sela. Como é instável significa que se a condição inicial for próxima de , a evolução do sistema vai se afastar do ponto de equilíbrio. Essa aproximação também indica que próximo do ponto de equilíbrio, a dinâmica pode ser descrita tanto pelo conjunto de equações não lineares, como pelo sistema linear.

Agora o segundo ponto de equilíbrio, de maneira geral é . Primeiro reescrevemos o sistema em torno do ponto de equilíbrio, isto é, fazemos um deslocamento e . Então temos e e substituindo, para :

E para :

Podemos analisar o comportamento em torno do ponto de equilíbrio:

Desprezando os termos não lineares então:

Então os autovalores correspondentes:

Como temos raízes puramente imaginárias e , temos um centro, ponto de estabilidade. Isto é, se a condição inicial for próxima de o sistema evoluirá de forma que o estado do sistema permanecerá próximo do ponto de equilíbrio.

Classificação dos pontos de estabilidade de acordo com os autovalores[1].

Segundo método de Lyapunov

Para avaliar o ponto , podemos usar de maneira análoga ao exemplo do segundo critério de Lyapunov:

Como já discutimos e a região onde para , sendo um ponto de acumulação em [2]. Então:

Lembrando do nosso segundo ponto de equilíbrio :


Então se estamos próximos suficiente do ponto de equilíbrio em análise , temos então uma instabilidade local pois é positivo definido em , uma vez que , . Olhando o segundo ponto de equilíbrio, , podemos manipular as equações da seguinte forma:

Definindo então a seguinte função de Lyapunov:

Analisando no ponto de e equilíbrio, temos:

Agora precisamos que para tenhamos , na região próxima ao ponto de equilíbrio. Separando em dois termos:

De forma geral temos , e precisamos que quando . Além de ser facilmente visto via gráfico para todos os valores aceitáveis , também podemos analisar a seguinte desigualdade:

Podemos ver quer a desigualdade desigualdade é válida exceto se . Mas como fizemos a seguinte substituição então , e de fato que queremos que seja positiva definida fora do ponto de equilíbrio. Uma vez que sabemos que é positivo definido, calculamos então:

Então:

Temos então a condição de estabilidade concordando como que já havíamos obtidos anteriormente.

Solução numérica

Um exemplo resolvido numericamente pode ser visto em Modelo de Lotka-Volterra amortecido, onde foi aproveitado os códigos desenvolvidos para este mesmo.

Principais materiais utilizados

  1. A survey of constructing Lyapunov functions for mathematical models in population biology (Sze-Bi, Revista Taiwanesa de Matemática )
  2. Estabilidade de pontos de equilíbrio e existência de soluções periódicas em alguns modelos bidimensionais (Salvador Tavares de Oliveira, UNESP)
  3. Modelagem Matemática e estabilidade de sistemas predador-presa (Paulo Laerte Natti e outros, UEL)
  4. Modelo de Lotka-Volterra: a dinâmica predador-presa (Rafael Biasi Pata e Elisa Regina Cara, UNIPAMPA)

Citações

  1. Análise de sistemas não-lineares (Vilma A. Oliveira e José Ricardo Rosolen, USP)
  2. Stability Analysis of Nonlinear Systems (Roberto Zanasi, Universidade de Módena e Reggio Emília)


Anterior: Modelos Logísticos | Índice: Ecologia | Próximo: Modelo de Lotka-Volterra amortecido