Modelo de Lotka-Volterra amortecido: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
 
Sem resumo de edição
 
(6 revisões intermediárias pelo mesmo usuário não estão sendo mostradas)
Linha 1: Linha 1:
{{Ecologia| [[[Modelo de Lotka-Volterra amortecido]] |[[Modelo de Levins]]}}
__NOTOC__
{{Ecologia| [[[Modelo de Lotka-Volterra amortecido]] |[[Modelo de Levins]]}}
{{Ecologia| [[Modelo de Lotka-Volterra]] |[[Modelo de Levins aprimorado para 2 espécies | Modelo de Levins aprimorado para 2 espécies I]]}}
 
Uma versão do modelo de Lotka-Volterra aprimorada inclui um termo de saturação na população de presas, isto é, um termo logístico (que inibe o aumento exponencial) visando representar a finitude dos recursos disponíveis para uma espécie. Este modelo é chamado de modelo de Lotka-Volterra amortecido.
 
* <math display="inline">\frac{dx}{dt}=x\left(a-\alpha y\right)-kx^{2}</math>
* <math display="inline">\frac{dy}{dt}=y\left(-c+\gamma x\right)</math>
 
Onde <math display="inline">k</math> é uma constante positiva. Agora temos três pontos de equilíbrio, novamente temos <math display="inline">\left(0,0\right)</math>. Mas temos outro ponto quando apenas <math display="inline">y=0</math>:
 
<math display="block">a-\alpha y-kx=a-kx=0\rightarrow x=\frac{a}{k}</math>
 
Então <math display="inline">\left(\frac{a}{k},0\right)</math> ou seja um ponto de equilíbrio com apenas a sobrevivência da presa. E ainda temos também um ponto de coexistência entre ambas as espécies:
 
<math display="block">a-\alpha y-kx=0</math><math display="block">-c+\gamma x=0</math>
 
Isolando então <math display="inline">x</math> na segunda equação <math display="inline">x=\frac{c}{\gamma}</math> e substituindo na primeira:
 
<math display="block">a-\alpha y-k\frac{c}{\gamma}=0</math>Então:<math display="block">y=\frac{a}{\alpha}-\frac{kc}{\alpha\gamma}=\frac{\gamma a-kc}{\alpha\gamma}</math>
 
Então nosso outro ponto de equilíbrio é dado por<math display="inline">\left(\frac{c}{\gamma},\frac{\gamma a-kc}{\alpha\gamma}\right)</math>. Infelizmente as equações não são separáveis como no caso anterior, portanto vamos analisar se a equação é semi-linear nas proximidades dos pontos de equilíbrio. Para <math display="inline">\left(0,0\right)</math>:
 
<math display="block">\lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\alpha xy-kx^{2}}{xa}=\lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\alpha y-kx}{a}=0</math><math display="block">\lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\gamma xy}{cy}=\lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\gamma}{c}x=0</math>
 
Para <math display="inline">\left(\frac{a}{k},0\right)</math> e fazendo a mudança de variáveis <math display="inline">u=x-\frac{a}{k}</math>, e <math display="inline">v=y</math>, temos:
 
<math display="block">\frac{du}{dt}=\left(\left(u+\frac{a}{k}\right)a-k\left(u+\frac{a}{k}\right)^{2}\right)-\left(\alpha\left(u+\frac{a}{k}\right)v\right)</math><math display="block">\frac{du}{dt}=\left(ua+\frac{a^{2}}{k}-\left(u^{2}k+\frac{a^{2}}{k}+2ua\right)\right)-\left(\alpha uv+\frac{\alpha a}{k}v\right)</math><math display="block">\frac{du}{dt}=-\left(ua+\frac{\alpha a}{k}v\right)-\left(\alpha uv+u^{2}k\right)</math>
 
E:
 
<math display="block">\frac{dv}{dt}=\left(-vc\right)+\left(\gamma v\left(u+\frac{a}{k}\right)\right)=v\left(\gamma\frac{a}{k}-c\right)+\left(\gamma vu\right)</math>
 
Então:
 
<math display="block">\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+u^{2}k}{ua+\frac{\alpha a}{k}v}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+u^{2}k}{u\left(a+\frac{\alpha a}{k}\frac{v}{u}\right)}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha v+uk}{\left(a+\frac{\alpha a}{k}\frac{v}{u}\right)}\right)</math>
 
Podemos fazer uma substituição de variável novamente usando coordenadas polares<ref>[https://www.math.utah.edu/lectures/math2210/12PostNotes.pdf Limits and Continuity] (Rebecca Noonan-Heale ,Universidade de Utah)</ref> <math display="inline">r^{2}=u^{2}+v^{2}</math> e <math display="inline">u=r\cos\theta</math>, <math display="inline">v=r\sin\theta</math>, então:
 
<math display="block">\lim_{r\rightarrow0}\left(\frac{\alpha r\sin\theta+kr\cos\theta}{\left(a+\frac{\alpha a}{k}\frac{r\sin\theta}{r\cos\theta}\right)}\right)=\lim_{r\rightarrow0}\left(\frac{\alpha kr\sin\theta+k^{2}r\cos\theta}{\left(ka+\alpha a\tan\theta\right)}\right)=0</math>
 
E o limite:
 
<math display="block">\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\frac{\gamma vu}{v\left(\gamma\frac{a}{k}-c\right)}=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\frac{\gamma u}{\left(\gamma\frac{a}{k}-c\right)}=0</math>
 
E por fim, vamos estudar os pontos de estabilidade em torno de <math display="inline">\left(\frac{c}{\gamma},\frac{\gamma a-kc}{\alpha\gamma}\right)</math>, tendo agora <math display="inline">u=x-\frac{c}{\gamma}</math> e <math display="inline">v=\frac{\gamma a-kc}{\alpha\gamma}-y</math>, então, manipulando novamente, primeiro trabalhando com <math>\dot{x}</math>:
 
<math display="block">\frac{dx}{dt}=\left(xa-kx^{2}\right)-\left(\alpha xy\right)</math><math display="block">\frac{du}{dt}=\left(\left(\frac{c}{\gamma}+u\right)a-k\left(\frac{c}{\gamma}+u\right)^{2}\right)-\left(\alpha\left(\frac{c}{\gamma}+u\right)\left(v+\frac{\gamma a-kc}{\alpha\gamma}\right)\right)</math><math display="block">\frac{du}{dt}=\left(\frac{ca}{\gamma}+au-\frac{kc^{2}}{\gamma^{2}}-ku^{2}-\frac{2ck}{\gamma}u\right)-\left(\frac{c\alpha}{\gamma}v+\frac{\gamma ac-kc^{2}}{\gamma^{2}}+\alpha uv+\left[\frac{\gamma a-kc}{\gamma}\right]u\right)</math><math display="block">\frac{du}{dt}=\left(\left(\frac{ca}{\gamma}-\frac{kc^{2}}{\gamma^{2}}-\frac{\gamma ac-kc^{2}}{\gamma^{2}}\right)+\left(a-\frac{2ck}{\gamma}-\left[\frac{\gamma a-kc}{\gamma}\right]-ku\right)u-\frac{c\alpha}{\gamma}v\right)-\left(\alpha uv\right)</math><math display="block">\frac{du}{dt}=\left(\left(-\frac{kc}{\gamma}-ku\right)u-\frac{c\alpha}{\gamma}v\right)-\left(\alpha uv\right)</math><math display="block">\frac{du}{dt}=-\left(\frac{kc}{\gamma}u+\frac{c\alpha}{\gamma}v\right)-\left(\alpha uv+ku^{2}\right)</math>
 
E com <math>\dot{y}</math>:
 
<math display="block">\frac{dy}{dt}=\left(-yc\right)+\left(\gamma yx\right)</math><math display="block">\frac{dv}{dt}=\left(-\left(v+\frac{\gamma a-kc}{\alpha\gamma}\right)c\right)+\left(\gamma\left(v+\frac{\gamma a-kc}{\alpha\gamma}\right)\left(\frac{c}{\gamma}+u\right)\right)</math><math display="block">\frac{dv}{dt}=\left(-vc-\frac{ac}{\alpha}+\frac{kc^{2}}{\alpha\gamma}\right)+\left(vc+\frac{\gamma ac-kc^{2}}{\alpha\gamma}+\gamma uv+\left[\frac{\gamma a-kc}{\alpha}\right]u\right)</math><math display="block">\frac{dv}{dt}=\gamma uv+\left[\frac{\gamma a-kc}{\alpha}\right]u</math>
 
Calculando então os limites, relacionado a <math>u</math>:
 
<math display="block">\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+ku^{2}}{\frac{kc}{\gamma}u+\frac{c\alpha}{\gamma}v}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+ku^{2}}{u\left(\frac{kc}{\gamma}+\frac{c\alpha}{\gamma}\frac{v}{u}\right)}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha v+ku}{\frac{kc}{\gamma}+\frac{c\alpha}{\gamma}\frac{v}{u}}\right)</math>
 
E novamente fazendo a substituição <math display="inline">r^{2}=u^{2}+v^{2}</math> e <math display="inline">u=r\cos\theta</math>, <math display="inline">v=r\sin\theta</math>, então:
 
<math display="block">\lim_{r\rightarrow0}\left(\frac{\alpha r\sin\theta+kr\cos\theta}{\frac{kc}{\gamma}+\frac{c\alpha}{\gamma}\frac{r\sin\theta}{r\cos\theta}}\right)=\lim_{r\rightarrow0}\left(\frac{r\alpha\gamma\sin\theta+rk\gamma\cos\theta}{kc+c\alpha\tan\theta}\right)=0</math>
 
E a <math>v</math>:
 
<math display="block">\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\frac{\gamma uv}{\left[\frac{\gamma a-kc}{\alpha}\right]u}=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\frac{\gamma v}{\left[\frac{\gamma a-kc}{\alpha}\right]}=0</math>
 
Então os três pontos são semi-lineares. A partir disto, podemos analisar os tipos de estabilidades. Para <math display="inline">\left(0,0\right)</math>:
 
<math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{cc}
a & 0\\
0 & -c
\end{array}\right)\left(\begin{array}{c}
x\\
y
\end{array}\right)</math>
 
Então:
 
<math display="block">\left(a-\lambda\right)\left(c+\lambda\right)=0</math> Novamente temos duas raízes reais de sinais opostos, então temos um ponto de sela, uma instabilidade. Para o segundo ponto:
 
<math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
-a & -\frac{\alpha a}{k}\\
0 & \gamma\frac{a}{k}-c
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)</math>
 
Então:
 
<math display="block">\left(-a-\lambda\right)\left(\left(\frac{\gamma a}{k}-c\right)-\lambda\right)=0</math><math display="block">\left(a+\lambda\right)\left(\left(\frac{\gamma a}{k}-c\right)-\lambda\right)=0</math>
 
Temos duas raízes reais uma é negativa <math display="inline">\lambda_{1}=-a</math>. Porém a classificação do ponto depende dos parâmetros escolhidos. Se <math display="inline">\left(\frac{\gamma a}{k}-c\right)>0</math> ou seja <math display="inline">\gamma a>ck</math>, temos uma instabilidade, uma sela, mas se <math display="inline">\gamma a<ck</math>, então temos um nó hiperbólico, ou seja, estabilidade. E por último:
 
<math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{kc}{\gamma} & -\frac{c\alpha}{\gamma}\\
\frac{\gamma a-kc}{\alpha} & 0
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)</math>
 
Então:
 
<math display="block">\left(\frac{kc}{\gamma}+\lambda\right)\lambda+\frac{c\alpha}{\gamma}\left(\frac{\gamma a-kc}{\alpha}\right)=0</math><math display="block">\gamma\lambda^{2}+kc\lambda+c\left(\gamma a-kc\right)=0</math>
 
Então:
 
<math display="block">\lambda=-\left(\frac{kc}{2\gamma}\right)\pm\frac{\sqrt{\left(kc\right)^{2}-4\gamma c\left(\gamma a-kc\right)}}{2\gamma}</math><math display="block">\lambda=-\left(\frac{kc}{2\gamma}\right)\pm\frac{\sqrt{\left[\left(kc\right)^{2}+4\gamma c^{2}k\right]-4c\gamma^{2}a}}{2\gamma}</math>
 
Então o comportamento do sistema vai depender da escolha de parâmetros, porém como todas constantes são positivas <math display="inline">-\left(\frac{kc}{2\gamma}\right)</math> vai ser sempre negativo, e a única forma de ser instável é se <math display="inline">\left(kc\right)^{2}+4\gamma c^{2}k>4c\gamma^{2}a</math>, para garantir que o número seja real, e ainda <math display="inline">\frac{\sqrt{\left(kc\right)^{2}+4\gamma c^{2}k-4c\gamma^{2}a}}{2\gamma}>\frac{kc}{2\gamma}</math> para que o autovalor seja positivo. Analisando então essa última desigualdade:
 
<math display="block">\frac{\sqrt{\left(kc\right)^{2}+4\gamma c^{2}kc-4c\gamma^{2}a}}{2\gamma}>\frac{kc}{2\gamma}</math><math display="block">\sqrt{\left(kc\right)^{2}+4\gamma c^{2}k-4c\gamma^{2}a}>kc</math>
 
Elevando ao quadrado:
 
<math display="block">\left(kc\right)^{2}+4\gamma c^{2}k-4c\gamma^{2}a>\left(kc\right)^{2}</math><math display="block">4\gamma c^{2}k-4c\gamma^{2}a>0</math>
 
Dividindo por <math display="inline">4c\gamma</math>
 
<math display="block">ck-\gamma a>0</math><math display="block">ck>\gamma a</math>
 
Então essa é a condição para que o autovalor seja positivo. E olhando pra primeira desigualdade:
 
<math display="block">\left(kc\right)^{2}+4\gamma c^{2}k>4c\gamma^{2}a</math><math display="block">\frac{k^{2}c}{4\gamma}+ck>\gamma a</math>
 
Para garantir que o número seja real. Então temos duas desigualdades para satisfazer para que seja instável:
 
* <math display="inline">ck>\gamma a</math>
* <math display="inline">\frac{k^{2}c}{4\gamma}+ck>\gamma a</math>
 
Como <math display="inline">\left(\frac{k^{2}c}{4\gamma}\right)</math> é necessariamente um termo positivo:
 
<math display="block">\gamma a<ck<\frac{k^{2}c}{4\gamma}+ck</math>
 
Ou seja, podemos restringir a condição de instabilidade para <math display="inline">ck>\gamma a</math> pois <math display="inline">ck<\frac{k^{2}c}{4\gamma}+ck</math>  é uma desigualdade válida para qualquer escolha de parâmetros válidos. Mas lembrando que para o outro ponto é estável se <math display="inline">ck>\gamma a</math> , então sempre temos um ponto de equilíbrio estável e outro instável (além do a instabilidade na origem). Ou seja, por exemplo para valores mais baixos de de <math display="inline">c</math> (termo de crescimento dos predadores) ou <math display="inline">k</math> (termo de amortecimento da presa) temos coexistência de ambas as espécies, se aumentar estes parâmetros, somente a presa sobrevive. Além disso, quando temos <math display="inline">k=0</math>:
 
<math display="block">\lambda=\pm\frac{\sqrt{-4c\gamma^{2}a}}{2\gamma}=\pm i\sqrt{ca}</math>
 
Ou seja, temos apenas a parte imaginária, e retornamos à estabilidade do centro. Dessa forma  <math display="inline">k=0</math> ou <math display="inline">k\neq0</math> determina se o sistema atinge equilíbrio ou permanece oscilatório, e depois o conjunto de parâmetros, caso atinja estabilidade, determina se ela é atingida com ou sem predadores.
 
== Exemplo ==
Para estudarmos melhor uma situação, vamos escolher os parâmetros: <math display="inline">a=1</math>, <math display="inline">\alpha=0.5</math>, <math display="inline">k=0.5</math>, <math display="inline">c=0.75</math>,<math display="inline">\gamma=0.5</math>. Então os pontos de equilíbrio são:
 
*<math display="inline">\left(0,0\right)\rightarrow\lambda=\left\{ 1,-0.75\right\}</math>,  uma sela, instável;
*<math display="inline">\left(2,0\right)\rightarrow\lambda=\left\{ -1,0.25\right\}</math>, outro ponto instável, outra sela;
*<math display="inline">\left(1.5,0.5\right)\rightarrow\lambda=\left\{ -0.375+0.22i,-0.375-0.22i\right\}</math>, agora temos um nó assintoticamente estável, pois as parte reais são negativas e as imaginárias são os conjugados.
 
E fazendo um rascunho do plano de fases, próximo de <math display="inline">\left(0,0\right)</math>, desprezando então os termos não-lineares:
 
<math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{cc}
a & 0\\
0 & -c
\end{array}\right)\left(\begin{array}{c}
x\\
y
\end{array}\right)=\left(\begin{array}{cc}
1 & 0\\
0 & -0.75
\end{array}\right)\left(\begin{array}{c}
x\\
y
\end{array}\right)</math><math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{c}
x\\
-0.75y
\end{array}\right)</math>
 
Próximo a <math display="inline">\left(\frac{a}{k},0\right)=\left(2,0\right)</math>:
 
<math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
-a & -\frac{\alpha a}{k}\\
& \gamma\frac{a}{k}-c
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)</math><math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
-1 & -1\\
& 0.25
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)=\left(\begin{array}{cc}
-1 & -1\\
& 0.25
\end{array}\right)\left(\begin{array}{c}
x-2\\
y
\end{array}\right)=\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)</math><math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{c}
\left(2-x\right)-y\\
0.25y
\end{array}\right)</math>
 
De <math display="inline">\left(\frac{c}{\gamma},\frac{\gamma a-kc}{\alpha\gamma}\right)=\left(1.5,0.5\right)</math>:
 
<math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{kc}{\gamma} & -\frac{c\alpha}{\gamma}\\
\frac{\gamma a-kc}{\alpha} & 0
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)</math><math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
-0.75 & -0.75\\
0.25 & 0
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)=\left(\begin{array}{cc}
-0.75 & -0.75\\
0.25 & 0
\end{array}\right)\left(\begin{array}{c}
x-1.5\\
y-0.5
\end{array}\right)=\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)</math><math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{c}
0.75\left[\left(1.5-x\right)+\left(0.5-y\right)\right]\\
0.25\left(x-1.5\right)
\end{array}\right)</math>
 
Plotando temos então:
[[Ficheiro:LVA.png|centro|miniaturadaimagem|A esquerda o rascunho do diagrama de fases, e a direita a evolução do sistema para as condições iniciais <math display="inline">\left(x_{0},y_{0}\right)=\left(2,0.05\right)</math>.|741x262px]]
 
 
Por curiosidade, se fazemos <math display="inline">k=0</math>: Para <math display="inline">\left(0,0\right)</math>:
 
<math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{cc}
a & 0\\
0 & -c
\end{array}\right)\left(\begin{array}{c}
x\\
y
\end{array}\right)=\left(\begin{array}{cc}
1 & 0\\
0 & -0.75
\end{array}\right)\left(\begin{array}{c}
x\\
y
\end{array}\right)</math>
 
E para <math display="inline">\left(\frac{c}{\gamma},\frac{a}{\alpha}\right)=\left(1.5,2.0\right)</math>:
 
<math display="block">\left(\begin{array}{c}
\dot{u}\\
\dot{v}
\end{array}\right)=\left(\begin{array}{cc}
0 & -\frac{\alpha c}{\gamma}\\
\frac{\gamma a}{\alpha} & 0
\end{array}\right)\left(\begin{array}{c}
u\\
v
\end{array}\right)</math><math display="block">\left(\begin{array}{c}
\dot{x}\\
\dot{y}
\end{array}\right)=\left(\begin{array}{cc}
0 & -0.75\\
1 & 0
\end{array}\right)\left(\begin{array}{c}
x-1.5\\
y-2
\end{array}\right)=\left(\begin{array}{c}
-0.75(y-2)\\
x-1.5
\end{array}\right)</math>Plotando o resultado:
[[Ficheiro:LV.png|centro|miniaturadaimagem|A direita o rascunho do diagrama de fase, e a esquerda a evolução para as condições iniciais <math display="inline">\left(x_{0},y_{0}\right)=\left(1,0.5\right)</math>.|741x262px]]
 
====== Códigos ======
 
Os seguintes códigos escritos em Python foram utilizados para obter a solução numérica e plotar o rascunho do diagrama de fases próximo aos pontos de equilíbrio.
 
<pre>
import matplotlib.pyplot as plt
import numpy as np
 
# LOTKA-VOLTERRA: Solução numérica
# Jhordan Silveira de Borba
# sbjhordan@gmail.com
 
def sol_lot():
    x=[]
    y=[]
    x.append(1)      # População inicial de presas
    y.append(0.5)    # População inicial de predadores
    N=400000        # Quantidade de passos
    d=0.0001        # Tamanhodos passos
    a=0              # 1: Amortecido, 0: Sem amortecimento
   
    for i in range(N-1):
        x.append(x[i]+d*(x[i]*(1-0.5*y[i])-0.5*x[i]*x[i]*a))
        y.append(y[i]+d*(y[i]*(-0.75+0.5*x[i])))
    #Plotamos a evolução temporal das frações de população
    X=np.arange(len(x)) #Eixo x
    plt.plot(X,x,'b-')
    plt.plot(X,y,'k-')
    plt.xlabel('Passo')
    plt.ylim(0,6)
    plt.show()
</pre>
A função abaixo tem como finalidade plotar um rascunho do plano de fase próximo ao pontos de equilíbrio do sistema:
<pre>
import matplotlib.pyplot as plt
import numpy as np
 
# LOTKA-VOLTERRA: Plano de fase
# Jhordan Silveira de Borba
# sbjhordan@gmail.com
 
def phase_lot():
    X = np.arange(0, 4, 0.2)  # Eixo x
    Y = np.arange(0, 4, 0.2)  # Eixo Y
    U,V=np.meshgrid(X,Y)
   
    p1=[0.,0.]          # Ponto de equilíbrio 1
    p2=[1.5,2.0]        # Ponto de equilíbrio 2
    p3=[1.5*100,0.5*100] # Ponto de equilíbrio 3
   
    c=0
    for x in X:
        l=0
        for y in Y:
            #Distâncias
            d1=np.sqrt((x-p1[0])*(x-p1[0])+(y-p1[1])*(y-p1[1]))
            d2=np.sqrt((x-p2[0])*(x-p2[0])+(y-p2[1])*(y-p2[1]))
            d3=np.sqrt((x-p3[0])*(x-p3[0])+(y-p3[1])*(y-p3[1]))
           
            #encontrar o ponto de equilíbrio mais próximo
            p=1
            if(d2<d1):
                p=2
                if(d3<d2):
                    p=3
            elif(d3<d1):
                p=3
               
            # Calculamos o vetor de variação do estado baseado no ponto mais próximo:
            # [dx/dt,dy/dt]=[a,b]
            if(p==1):
                a=x 
                b=-0.75*y
            elif(p==2):
                a=-0.75*(y-2)
                b=x-1.5
            elif(p==3):
                a=0.75*((1.5-x)+(0.5-y))
                b=0.25*(x-1.5)
            else:
                print("Algo deu errado")
            m=np.sqrt(a*a+b*b) # Módulo do vetor para normalizar
            if(m==0):
                m=1
            U[l,c]=a/m
            V[l,c]=b/m
            l=l+1
        c=c+1
   
    # Plotamos o resultado
    fig, ax = plt.subplots()
    ax.quiver(X, Y, U, V)      # Os vetores
    plt.plot(p1[0],p1[1],'ro') # O ponto de equilíbrio 1
    plt.plot(p2[0],p2[1],'go') # O ponto de equilíbrio 2
    plt.plot(p3[0],p3[1],'go') # O ponto de equilíbrio 3
    plt.show()
</pre>
 
====== Principais materiais utilizados ======
 
# [https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-i-first-order-differential-equations/numerical-methods/ Numerical Methods] (Instituto de Tecnologia de Massachusetts)
# [https://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/lec24.html Numerical Solution of Ordinary Differential Equations] (R. Sureshkumar,Instituto de Tecnologia de Massachusetts)
# A estes materiais, somam-se os vistos em [[Modelo de Lotka-Volterra]]
 
====== Citações ======
<references />
 
 
{{Ecologia| [[Modelo de Lotka-Volterra]] |[[Modelo de Levins aprimorado para 2 espécies | Modelo de Levins aprimorado para 2 espécies I]]}}

Edição atual tal como às 17h44min de 2 de maio de 2021


Anterior: Modelo de Lotka-Volterra | Índice: Ecologia | Próximo: Modelo de Levins aprimorado para 2 espécies I

Uma versão do modelo de Lotka-Volterra aprimorada inclui um termo de saturação na população de presas, isto é, um termo logístico (que inibe o aumento exponencial) visando representar a finitude dos recursos disponíveis para uma espécie. Este modelo é chamado de modelo de Lotka-Volterra amortecido.

  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{dx}{dt}=x\left(a-\alpha y\right)-kx^{2}}
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{dy}{dt}=y\left(-c+\gamma x\right)}

Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k} é uma constante positiva. Agora temos três pontos de equilíbrio, novamente temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)} . Mas temos outro ponto quando apenas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y=0} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a-\alpha y-kx=a-kx=0\rightarrow x=\frac{a}{k}}

Então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{a}{k},0\right)} ou seja um ponto de equilíbrio com apenas a sobrevivência da presa. E ainda temos também um ponto de coexistência entre ambas as espécies:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a-\alpha y-kx=0} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle -c+\gamma x=0}

Isolando então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x} na segunda equação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x=\frac{c}{\gamma}} e substituindo na primeira:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a-\alpha y-k\frac{c}{\gamma}=0} Então:Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\frac{a}{\alpha}-\frac{kc}{\alpha\gamma}=\frac{\gamma a-kc}{\alpha\gamma}}

Então nosso outro ponto de equilíbrio é dado porFalhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{c}{\gamma},\frac{\gamma a-kc}{\alpha\gamma}\right)} . Infelizmente as equações não são separáveis como no caso anterior, portanto vamos analisar se a equação é semi-linear nas proximidades dos pontos de equilíbrio. Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\alpha xy-kx^{2}}{xa}=\lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\alpha y-kx}{a}=0} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\gamma xy}{cy}=\lim_{\left(x,y\right)\rightarrow\left(0,0\right)}-\frac{\gamma}{c}x=0}

Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{a}{k},0\right)} e fazendo a mudança de variáveis Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u=x-\frac{a}{k}} , e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle v=y} , temos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=\left(\left(u+\frac{a}{k}\right)a-k\left(u+\frac{a}{k}\right)^{2}\right)-\left(\alpha\left(u+\frac{a}{k}\right)v\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=\left(ua+\frac{a^{2}}{k}-\left(u^{2}k+\frac{a^{2}}{k}+2ua\right)\right)-\left(\alpha uv+\frac{\alpha a}{k}v\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=-\left(ua+\frac{\alpha a}{k}v\right)-\left(\alpha uv+u^{2}k\right)}

E:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dv}{dt}=\left(-vc\right)+\left(\gamma v\left(u+\frac{a}{k}\right)\right)=v\left(\gamma\frac{a}{k}-c\right)+\left(\gamma vu\right)}

Então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+u^{2}k}{ua+\frac{\alpha a}{k}v}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+u^{2}k}{u\left(a+\frac{\alpha a}{k}\frac{v}{u}\right)}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha v+uk}{\left(a+\frac{\alpha a}{k}\frac{v}{u}\right)}\right)}

Podemos fazer uma substituição de variável novamente usando coordenadas polares[1] Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle r^{2}=u^{2}+v^{2}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u=r\cos\theta} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle v=r\sin\theta} , então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{r\rightarrow0}\left(\frac{\alpha r\sin\theta+kr\cos\theta}{\left(a+\frac{\alpha a}{k}\frac{r\sin\theta}{r\cos\theta}\right)}\right)=\lim_{r\rightarrow0}\left(\frac{\alpha kr\sin\theta+k^{2}r\cos\theta}{\left(ka+\alpha a\tan\theta\right)}\right)=0}

E o limite:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\frac{\gamma vu}{v\left(\gamma\frac{a}{k}-c\right)}=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\frac{\gamma u}{\left(\gamma\frac{a}{k}-c\right)}=0}

E por fim, vamos estudar os pontos de estabilidade em torno de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{c}{\gamma},\frac{\gamma a-kc}{\alpha\gamma}\right)} , tendo agora Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u=x-\frac{c}{\gamma}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle v=\frac{\gamma a-kc}{\alpha\gamma}-y} , então, manipulando novamente, primeiro trabalhando com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{x}} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dx}{dt}=\left(xa-kx^{2}\right)-\left(\alpha xy\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=\left(\left(\frac{c}{\gamma}+u\right)a-k\left(\frac{c}{\gamma}+u\right)^{2}\right)-\left(\alpha\left(\frac{c}{\gamma}+u\right)\left(v+\frac{\gamma a-kc}{\alpha\gamma}\right)\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=\left(\frac{ca}{\gamma}+au-\frac{kc^{2}}{\gamma^{2}}-ku^{2}-\frac{2ck}{\gamma}u\right)-\left(\frac{c\alpha}{\gamma}v+\frac{\gamma ac-kc^{2}}{\gamma^{2}}+\alpha uv+\left[\frac{\gamma a-kc}{\gamma}\right]u\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=\left(\left(\frac{ca}{\gamma}-\frac{kc^{2}}{\gamma^{2}}-\frac{\gamma ac-kc^{2}}{\gamma^{2}}\right)+\left(a-\frac{2ck}{\gamma}-\left[\frac{\gamma a-kc}{\gamma}\right]-ku\right)u-\frac{c\alpha}{\gamma}v\right)-\left(\alpha uv\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=\left(\left(-\frac{kc}{\gamma}-ku\right)u-\frac{c\alpha}{\gamma}v\right)-\left(\alpha uv\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{du}{dt}=-\left(\frac{kc}{\gamma}u+\frac{c\alpha}{\gamma}v\right)-\left(\alpha uv+ku^{2}\right)}

E com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{y}} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dt}=\left(-yc\right)+\left(\gamma yx\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dv}{dt}=\left(-\left(v+\frac{\gamma a-kc}{\alpha\gamma}\right)c\right)+\left(\gamma\left(v+\frac{\gamma a-kc}{\alpha\gamma}\right)\left(\frac{c}{\gamma}+u\right)\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dv}{dt}=\left(-vc-\frac{ac}{\alpha}+\frac{kc^{2}}{\alpha\gamma}\right)+\left(vc+\frac{\gamma ac-kc^{2}}{\alpha\gamma}+\gamma uv+\left[\frac{\gamma a-kc}{\alpha}\right]u\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dv}{dt}=\gamma uv+\left[\frac{\gamma a-kc}{\alpha}\right]u}

Calculando então os limites, relacionado a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+ku^{2}}{\frac{kc}{\gamma}u+\frac{c\alpha}{\gamma}v}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha uv+ku^{2}}{u\left(\frac{kc}{\gamma}+\frac{c\alpha}{\gamma}\frac{v}{u}\right)}\right)=\lim_{\left(u,v\right)\rightarrow\left(0,0\right)}\left(\frac{\alpha v+ku}{\frac{kc}{\gamma}+\frac{c\alpha}{\gamma}\frac{v}{u}}\right)}

E novamente fazendo a substituição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle r^{2}=u^{2}+v^{2}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u=r\cos\theta} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle v=r\sin\theta} , então:

E a :

Então os três pontos são semi-lineares. A partir disto, podemos analisar os tipos de estabilidades. Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{cc} a & 0\\ 0 & -c \end{array}\right)\left(\begin{array}{c} x\\ y \end{array}\right)}

Então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(a-\lambda\right)\left(c+\lambda\right)=0} Novamente temos duas raízes reais de sinais opostos, então temos um ponto de sela, uma instabilidade. Para o segundo ponto:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} -a & -\frac{\alpha a}{k}\\ 0 & \gamma\frac{a}{k}-c \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)}

Então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(-a-\lambda\right)\left(\left(\frac{\gamma a}{k}-c\right)-\lambda\right)=0} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(a+\lambda\right)\left(\left(\frac{\gamma a}{k}-c\right)-\lambda\right)=0}

Temos duas raízes reais uma é negativa Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \lambda_{1}=-a} . Porém a classificação do ponto depende dos parâmetros escolhidos. Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{\gamma a}{k}-c\right)>0} ou seja Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \gamma a>ck} , temos uma instabilidade, uma sela, mas se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \gamma a<ck} , então temos um nó hiperbólico, ou seja, estabilidade. E por último:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} -\frac{kc}{\gamma} & -\frac{c\alpha}{\gamma}\\ \frac{\gamma a-kc}{\alpha} & 0 \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)}

Então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{kc}{\gamma}+\lambda\right)\lambda+\frac{c\alpha}{\gamma}\left(\frac{\gamma a-kc}{\alpha}\right)=0} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma\lambda^{2}+kc\lambda+c\left(\gamma a-kc\right)=0}

Então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=-\left(\frac{kc}{2\gamma}\right)\pm\frac{\sqrt{\left(kc\right)^{2}-4\gamma c\left(\gamma a-kc\right)}}{2\gamma}} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=-\left(\frac{kc}{2\gamma}\right)\pm\frac{\sqrt{\left[\left(kc\right)^{2}+4\gamma c^{2}k\right]-4c\gamma^{2}a}}{2\gamma}}

Então o comportamento do sistema vai depender da escolha de parâmetros, porém como todas constantes são positivas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle -\left(\frac{kc}{2\gamma}\right)} vai ser sempre negativo, e a única forma de ser instável é se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(kc\right)^{2}+4\gamma c^{2}k>4c\gamma^{2}a} , para garantir que o número seja real, e ainda Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{\sqrt{\left(kc\right)^{2}+4\gamma c^{2}k-4c\gamma^{2}a}}{2\gamma}>\frac{kc}{2\gamma}} para que o autovalor seja positivo. Analisando então essa última desigualdade:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{\left(kc\right)^{2}+4\gamma c^{2}kc-4c\gamma^{2}a}}{2\gamma}>\frac{kc}{2\gamma}} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\left(kc\right)^{2}+4\gamma c^{2}k-4c\gamma^{2}a}>kc}

Elevando ao quadrado:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(kc\right)^{2}+4\gamma c^{2}k-4c\gamma^{2}a>\left(kc\right)^{2}} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\gamma c^{2}k-4c\gamma^{2}a>0}

Dividindo por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle 4c\gamma}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle ck-\gamma a>0} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle ck>\gamma a}

Então essa é a condição para que o autovalor seja positivo. E olhando pra primeira desigualdade:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(kc\right)^{2}+4\gamma c^{2}k>4c\gamma^{2}a} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{k^{2}c}{4\gamma}+ck>\gamma a}

Para garantir que o número seja real. Então temos duas desigualdades para satisfazer para que seja instável:

  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle ck>\gamma a}
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{k^{2}c}{4\gamma}+ck>\gamma a}

Como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{k^{2}c}{4\gamma}\right)} é necessariamente um termo positivo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma a<ck<\frac{k^{2}c}{4\gamma}+ck}

Ou seja, podemos restringir a condição de instabilidade para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle ck>\gamma a} pois Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle ck<\frac{k^{2}c}{4\gamma}+ck} é uma desigualdade válida para qualquer escolha de parâmetros válidos. Mas lembrando que para o outro ponto é estável se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle ck>\gamma a} , então sempre temos um ponto de equilíbrio estável e outro instável (além do a instabilidade na origem). Ou seja, por exemplo para valores mais baixos de de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle c} (termo de crescimento dos predadores) ou Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k} (termo de amortecimento da presa) temos coexistência de ambas as espécies, se aumentar estes parâmetros, somente a presa sobrevive. Além disso, quando temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k=0} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=\pm\frac{\sqrt{-4c\gamma^{2}a}}{2\gamma}=\pm i\sqrt{ca}}

Ou seja, temos apenas a parte imaginária, e retornamos à estabilidade do centro. Dessa forma Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k=0} ou Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k\neq0} determina se o sistema atinge equilíbrio ou permanece oscilatório, e depois o conjunto de parâmetros, caso atinja estabilidade, determina se ela é atingida com ou sem predadores.

Exemplo

Para estudarmos melhor uma situação, vamos escolher os parâmetros: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a=1} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \alpha=0.5} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k=0.5} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle c=0.75} ,Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \gamma=0.5} . Então os pontos de equilíbrio são:

  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)\rightarrow\lambda=\left\{ 1,-0.75\right\}} , uma sela, instável;
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(2,0\right)\rightarrow\lambda=\left\{ -1,0.25\right\}} , outro ponto instável, outra sela;
  • Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(1.5,0.5\right)\rightarrow\lambda=\left\{ -0.375+0.22i,-0.375-0.22i\right\}} , agora temos um nó assintoticamente estável, pois as parte reais são negativas e as imaginárias são os conjugados.

E fazendo um rascunho do plano de fases, próximo de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)} , desprezando então os termos não-lineares:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{cc} a & 0\\ 0 & -c \end{array}\right)\left(\begin{array}{c} x\\ y \end{array}\right)=\left(\begin{array}{cc} 1 & 0\\ 0 & -0.75 \end{array}\right)\left(\begin{array}{c} x\\ y \end{array}\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{c} x\\ -0.75y \end{array}\right)}

Próximo a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{a}{k},0\right)=\left(2,0\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} -a & -\frac{\alpha a}{k}\\ & \gamma\frac{a}{k}-c \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} -1 & -1\\ & 0.25 \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)=\left(\begin{array}{cc} -1 & -1\\ & 0.25 \end{array}\right)\left(\begin{array}{c} x-2\\ y \end{array}\right)=\left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{c} \left(2-x\right)-y\\ 0.25y \end{array}\right)}

De Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{c}{\gamma},\frac{\gamma a-kc}{\alpha\gamma}\right)=\left(1.5,0.5\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} -\frac{kc}{\gamma} & -\frac{c\alpha}{\gamma}\\ \frac{\gamma a-kc}{\alpha} & 0 \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} -0.75 & -0.75\\ 0.25 & 0 \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)=\left(\begin{array}{cc} -0.75 & -0.75\\ 0.25 & 0 \end{array}\right)\left(\begin{array}{c} x-1.5\\ y-0.5 \end{array}\right)=\left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{c} 0.75\left[\left(1.5-x\right)+\left(0.5-y\right)\right]\\ 0.25\left(x-1.5\right) \end{array}\right)}

Plotando temos então:

A esquerda o rascunho do diagrama de fases, e a direita a evolução do sistema para as condições iniciais Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{0},y_{0}\right)=\left(2,0.05\right)} .


Por curiosidade, se fazemos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k=0} : Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(0,0\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{cc} a & 0\\ 0 & -c \end{array}\right)\left(\begin{array}{c} x\\ y \end{array}\right)=\left(\begin{array}{cc} 1 & 0\\ 0 & -0.75 \end{array}\right)\left(\begin{array}{c} x\\ y \end{array}\right)}

E para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(\frac{c}{\gamma},\frac{a}{\alpha}\right)=\left(1.5,2.0\right)} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{u}\\ \dot{v} \end{array}\right)=\left(\begin{array}{cc} 0 & -\frac{\alpha c}{\gamma}\\ \frac{\gamma a}{\alpha} & 0 \end{array}\right)\left(\begin{array}{c} u\\ v \end{array}\right)} Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\begin{array}{c} \dot{x}\\ \dot{y} \end{array}\right)=\left(\begin{array}{cc} 0 & -0.75\\ 1 & 0 \end{array}\right)\left(\begin{array}{c} x-1.5\\ y-2 \end{array}\right)=\left(\begin{array}{c} -0.75(y-2)\\ x-1.5 \end{array}\right)} Plotando o resultado:

A direita o rascunho do diagrama de fase, e a esquerda a evolução para as condições iniciais Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x_{0},y_{0}\right)=\left(1,0.5\right)} .
Códigos

Os seguintes códigos escritos em Python foram utilizados para obter a solução numérica e plotar o rascunho do diagrama de fases próximo aos pontos de equilíbrio.

import matplotlib.pyplot as plt
import numpy as np

# LOTKA-VOLTERRA: Solução numérica
# Jhordan Silveira de Borba
# sbjhordan@gmail.com

def sol_lot():
    x=[]
    y=[]
    x.append(1)      # População inicial de presas
    y.append(0.5)    # População inicial de predadores
    N=400000         # Quantidade de passos
    d=0.0001         # Tamanhodos passos
    a=0              # 1: Amortecido, 0: Sem amortecimento
    
    for i in range(N-1):
        x.append(x[i]+d*(x[i]*(1-0.5*y[i])-0.5*x[i]*x[i]*a))
        y.append(y[i]+d*(y[i]*(-0.75+0.5*x[i])))
    #Plotamos a evolução temporal das frações de população
    X=np.arange(len(x)) #Eixo x
    plt.plot(X,x,'b-')
    plt.plot(X,y,'k-')
    plt.xlabel('Passo')
    plt.ylim(0,6)
    plt.show()

A função abaixo tem como finalidade plotar um rascunho do plano de fase próximo ao pontos de equilíbrio do sistema:

import matplotlib.pyplot as plt
import numpy as np

# LOTKA-VOLTERRA: Plano de fase
# Jhordan Silveira de Borba
# sbjhordan@gmail.com

def phase_lot():
    X = np.arange(0, 4, 0.2)  # Eixo x
    Y = np.arange(0, 4, 0.2)  # Eixo Y
    U,V=np.meshgrid(X,Y)
    
    p1=[0.,0.]           # Ponto de equilíbrio 1
    p2=[1.5,2.0]         # Ponto de equilíbrio 2
    p3=[1.5*100,0.5*100] # Ponto de equilíbrio 3
    
    c=0
    for x in X:
        l=0
        for y in Y:
            #Distâncias
            d1=np.sqrt((x-p1[0])*(x-p1[0])+(y-p1[1])*(y-p1[1]))
            d2=np.sqrt((x-p2[0])*(x-p2[0])+(y-p2[1])*(y-p2[1]))
            d3=np.sqrt((x-p3[0])*(x-p3[0])+(y-p3[1])*(y-p3[1]))
            
            #encontrar o ponto de equilíbrio mais próximo
            p=1
            if(d2<d1):
                p=2
                if(d3<d2):
                    p=3
            elif(d3<d1):
                p=3
                
            # Calculamos o vetor de variação do estado baseado no ponto mais próximo:
            # [dx/dt,dy/dt]=[a,b]
            if(p==1):
                a=x  
                b=-0.75*y
            elif(p==2):
                a=-0.75*(y-2)
                b=x-1.5
            elif(p==3):
                a=0.75*((1.5-x)+(0.5-y))
                b=0.25*(x-1.5)
            else:
                print("Algo deu errado")
            m=np.sqrt(a*a+b*b) # Módulo do vetor para normalizar
            if(m==0):
                m=1
            U[l,c]=a/m
            V[l,c]=b/m
            l=l+1
        c=c+1
    
    # Plotamos o resultado
    fig, ax = plt.subplots()
    ax.quiver(X, Y, U, V)      # Os vetores
    plt.plot(p1[0],p1[1],'ro') # O ponto de equilíbrio 1
    plt.plot(p2[0],p2[1],'go') # O ponto de equilíbrio 2
    plt.plot(p3[0],p3[1],'go') # O ponto de equilíbrio 3
    plt.show()
Principais materiais utilizados
  1. Numerical Methods (Instituto de Tecnologia de Massachusetts)
  2. Numerical Solution of Ordinary Differential Equations (R. Sureshkumar,Instituto de Tecnologia de Massachusetts)
  3. A estes materiais, somam-se os vistos em Modelo de Lotka-Volterra
Citações
  1. Limits and Continuity (Rebecca Noonan-Heale ,Universidade de Utah)


Anterior: Modelo de Lotka-Volterra | Índice: Ecologia | Próximo: Modelo de Levins aprimorado para 2 espécies I