Medidas estáticas
Em dinâmica molecular, medidas estáticas são medidas realizadas em um passo específico de tempo da simulação.
Pair Distribution Function
A Pair Distribution Function , ou "", é uma função que estima o quão provável é encontrar duas partículas a uma distância dentro de um sistema de várias partículas.
Em um sistema de partículas, o é definido como a média do número de partículas a uma distância :
Numéricamente pode ser interpretado como a média do número de pares de partículas a uma distância entre Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle r+\Delta r} pesado pelo volume/área desta região.
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r,\Delta r)=\frac{V_t}{N^2}\sum_{i=1}^N\sum_{j\neq i}^N\left[\frac{rect\left(\frac{r-|r_i-r_j|}{\Delta r}\right)}{V\left(r+\frac{\Delta r}{2}\right)-V\left(r-\frac{\Delta r}{2}\right)}\right] }
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_t} é o/a volume/área total e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle rect} é a função retangular.
Em resumo, o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(r,\Delta r)}
é a média dos histogramas do número de partículas em um bin de largura Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta r}
a uma Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle r}
feitos para cada partícula no sistema pesado pelo volume/área deste bin.
Construção do Código
Resultados
Referências
- Frenkel, Daan and Smit, Berend (2001). Understanding Molecular Simulation. Academic Press.
Psi 6 (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } )
No estudo do agrupamento de pontos equidistantes em um espaço 2D, é possível provar matematicamente que o formato formado pelos pontos que maximiza a utilização do espaço é o padrão hexagonal. Para dinâmicas moleculares com potenciais de Lennard-Jones com densidade suficientemente alta (rho ~0.8) é possível observar que o padrão formado após o relaxamento (tempo suficiente para a rede se estabilizar) é de fato o padrão hexagonal.
O psi 6 é uma análise de o quão hexagonal um padrão de posições está em um certo tempo da simulação. É possível associar a cada partícula um valor que varia entre -1 e 1 da hexagonalidade do padrão de posições formado por ele e seus primeiros vizinhos (conjunto de partículas mais próximas). Com essa medida é possível quantificar diferentes regiões da "caixa" em que as partículas estão localizadas e então localizar possíveis "defeitos" no padrão hexagonal.
Para um padrão hexagonal perfeito, cada partícula apresenta 6 primeiros vizinhos, cada qual posicionado simetricamente em torno dessa. Analisando a simetria, cada vizinho consecutivo deve apresentar um ângulo de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{3}} . Buscando uma relação em que esta situação seja a situação de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 = 1} , é possível definir que o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } vale:
Onde i é o índice do i-ésimo vizinho e n é o número de primeiros vizinhos. Esta relação deixa específico que o caso de 6 primeiros vizinhos e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\frac{\pi}{3}} resulte em um valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6=1} .
Implementação Computacional
Pode-se separar a implementação computacional em dois procedimentos necesssários: Encontrar os primeiros vizinhos para cada partícula e então calcular, de fato, o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6}
.
Encontrando vizinhos
Por definição, os primeiros vizinhos de uma partícula são aquelas partículas que estão presentes em um anel mais próximo dela, como mostra a figura ao lado.
O problema de encontrar primeiros vizinhos é um problema bastante discutido em teoria da computação e diversos métodos foram desenvolvidos para efetuar esta tarefa. Desta forma a maioria dos métodos otimizados são de difícil implementação e então não serão tratados nesse verbete.
O método aqui citado é pouco otimizado, pois utiliza-se um for em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N^2} , porém de implementação razoavelmente simples. O método consiste em encontrar as partículas mais próximas da partícula-teste (partícula em que busca-se calcular o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6} baseando-se em outro valor já calculado, a medida do g(r), desta forma o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6} resultará em um valor razoável ( >0.8 ) se os vizinhos dentro do raio medido no g(r) são de fato 6 e estão localizados em um padrão quase-hexagonal em torno da partícula-teste.
Para encontrar os primeiros vizinhos baseando-se no g(r), precisa-se observar qual a medida do primeiro pico no gráfico do g(r) e então definir este como uma distância de corte para a partícular ser ou não vizinha (isto é, um circulo com o raio da distância de corte ao redor da partícula-teste de forma que outras partículas dentro deste círculo são suas vizinhas). Neste caso, definem-se três vetores: "neighborsX" (que guarda a posição X do vizinho), "neighborsY"(que guarda a posição Y do vizinho) e "dNeighbors"(que guarda a distância do vizinho) e então faz-se o for em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N^2} buscando-se as distância menores que o raio de corte:
for(i=0;i<NP;i++){
k=0;
xOrg=xx[i];
yOrg=yy[i];
for(j=0;j<NP;j++){
x2=xx[j];
y2=yy[j];
if(i!=j){
if(distance(xOrg,yOrg,x2,y2)<radiusLimit)
{
neighborsX[k]=x2;
neighborsY[k]=y2;
dNeighbors[k]=distance(x2,y2,xOrg,yOrg);
k+=1;
}
}
}
Portanto após esse algoritmo, temos guardadas as posições das partículas mais próximas. É importante ressaltar que o "for" em partícula-teste ainda não foi fechado, e ainda dentro deste mesmo loop serão calculados os valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } .
Calculando o Psi 6
Tendo os valores de X e Y dos vizinhos da partícula-teste, podemos proceder para o cálculo do Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } . Para este cálculo, precisamos dos ângulos que cada vizinho tem em relação a partícula-teste, isto é, setamos um referencial X-Y com a origem na partícula-teste e calculamos o ângulo que cada vizinho tem com o eixo X, este ângulo será chamado de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi } e será dado pela seguinte relação:
Na implementação em código fica:
for(j=0;j<k;j++){
delX=neighborsX[j]-xx[i];
delY=neighborsY[j]-yy[i];
//Condições de contorno periódicas
delX=delX-rint(delX/Lx)*Lx;
delY=delY-rint(delY/Ly)*Ly;
// --- //
angle[j]=atan2(delY,delX);
if (angle[j]<0)
angle[j]=2*PI+angle[j];
psix[i]=0;
Agora somente precisa-se realizar um algoritmo que ordene o vetor "angle" do menor para o maior ângulo, utilizando algoritmos de ordenamento (bubblesort, quicksort, etc) desta forma é possível calcular os Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta_i } .
Feito o ordenamento do vetor, basta calcular a média do valor do Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } de cada vizinho. Para isto, precisamos calcular os valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta_i } em função dos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi } , basta realizar a subtração do próximo vizinho no vetor pelo valor do ângulo do vizinho atual, dessa forma: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta_i = \psi_{i+1} - \psi_i } com exceção do último vizinho, que será o ângulo dele menos o do primeiro, desta forma a implementação fica:
firstAngle=angle[0];
for(j=0;j<k-1;j++){
angle[j]=cos(6.*(angle[j+1]-angle[j]));
}
angle[k-1]=cos(6.*(firstAngle+2*PI-angle[k-1]));
for(j=0;j<k;j++){
psix[i]+=angle[j]/6.;
}
}
}
E então está calculado o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } , para facilitar a implementação é recomendado que este algoritmo seja uma função dentro de seu código e desta forma retorne o vetor "psix".
Exemplos
Para o caso de um potencial de Lennard-Jones, é possível observar resultados de mapas de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } , isto é, um mapa que mostra para cada partícula o seu valor da medida, da seguinte forma para cada valor de rho:
Aplicações em outras áreas
No estudo de como animais processam a sua posição em seu cerébro, são observadas as chamadas "Células de grade", neurônios que disparam em certos locais específicos do espaço e tendem a formar padrões de grade (hexagonal). Em posse das posições de disparo desses neurônios é possível utilizar a medida do Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_6 } para determinar a "hexagonalidade" dos disparos, podendo-se realizar estudos da influência desse formato na interpretação geoespacial do animal.
