Solução via integrais sucessivas

De Física Computacional
Revisão de 15h21min de 16 de junho de 2021 por Jhordan (discussão | contribs)
Ir para navegação Ir para pesquisar

Anterior: Introdução à equações diferenciais com atraso | Índice: Ecologia | Próximo: Estabilidade

O problema de valor inicial do sistema:

para uma dada entrada consiste em determinar a solução contínua para de forma que e para onde , sendo que é chamado muitas vezes de função inicial, ainda é comum assumir que . Além disso, é importante comentar que uma função de dimensão finita tem a propriedade de que o estado em qualquer tempo pode ser especificado listando um conjunto finito de valores, então de modo análogo, uma função de dimensão infinita exige um conjunto infinito de valores. Quando se fornece as condições iniciais para um sistema finito, só precisamos fornecer um pequeno conjunto de valores (basicamente os valores iniciais), porem para resolver uma equação com atraso, é preciso fornecer uma quantidade infinita, dessa equações diferenciais com atraso possuem dimensionalidade infinita.

Uma forma melhor de entender esta questão é pensar na solução da DDE (delayed differential equation) como um mapeamento de funções no intervalo em funções no intervalo . Em outras palavras a solução pode ser pensada como uma sequência de funções definidas sobre um conjunto de intervalos contíguos de tempo com tamanho .

Retornando à discussão da solução, a solução desejada é encontrada em intervalos sucessivos resolvendo equações diferenciais ordinários sem atraso em cada intervalo. Por exemplo, tendo um sistema:

Então para o sistema pode ser representado como uma equação ordinária diferencial. Para isso precisamos lembrar que em um instante qualquer , o valor da função é dado no instante , mas , e nesta condição temos . Isto é:

Então se obtermos a solução no segmento , pode-se obter uma solução análoga para o próximo intervalo.

Exemplo:

Considerando o sistema:

Podemos observar que e ainda . Então para o intervalo :

Resolvendo então, uma vez que , então:

E para o intervalo , sendo , agora temos o mesmo , mas , e novamente . Então:

Logo:


A solução no intervalo é então:

Principais materiais utilizados:


Anterior: Introdução à equações diferenciais com atraso | Índice: Ecologia | Próximo: Estabilidade