Solução via integrais sucessivas

De Física Computacional
Ir para navegação Ir para pesquisar

Anterior: Introdução à equações diferenciais com atraso | Índice: Ecologia | Próximo: Establidade em equações diferenciais com atraso

O problema de valor inicial do sistema:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot{x}\left(t\right)=f\left(t,x_{t},u\left(t\right)\right)}

para uma dada entrada Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle u\left(t\right)} consiste em determinar a solução contínua Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t\right)} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t\geq t_{0}} de forma que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t_{0}\right)=x_{0}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t\right)=\varphi\left(t\right)} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{0}-\tau_{max}\leq t<t_{0}} onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau_{max}=\text{const}\in\left[0,\infty\right)} , sendo que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \varphi} é chamado muitas vezes de função inicial, ainda é comum assumir que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \varphi\left(t_{0}\right)=x\left(t_{0}\right)} . Além disso, é importante comentar que uma função de dimensão finita tem a propriedade de que o estado em qualquer tempo pode ser especificado listando um conjunto finito de valores, então de modo análogo, uma função de dimensão infinita exige um conjunto infinito de valores. Quando se fornece as condições iniciais para um sistema finito, só precisamos fornecer um pequeno conjunto de valores (basicamente os valores iniciais), porem para resolver uma equação com atraso, é preciso fornecer uma quantidade infinita, dessa equações diferenciais com atraso possuem dimensionalidade infinita.

Uma forma melhor de entender esta questão é pensar na solução da DDE (delayed differential equation) como um mapeamento de funções no intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[t-\tau,t\right]} em funções no intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[t,t+\tau\right]} . Em outras palavras a solução pode ser pensada como uma sequência de funções Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f_{0}\left(t\right),f_{1}\left(t\right),f_{2}\left(t\right)\dots.} definidas sobre um conjunto de intervalos contíguos de tempo com tamanho Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau} .

Retornando à discussão da solução, a solução desejada é encontrada em intervalos sucessivos resolvendo equações diferenciais ordinários sem atraso em cada intervalo. Por exemplo, tendo um sistema:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}\left(t\right)= & f\left(t,x\left(t\right),x\left(t-\tau\right)\right) & t\geq & t_{0}\\ x\left(t_{0}\right)= & x_{0} & t= & t_{0}\\ x\left(t\right)= & \varphi\left(t\right) & t_{0}-\tau\leq t< & t_{0}\end{align}}

Então para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t\in\left[t_{0},t_{0}+\tau\right]} o sistema pode ser representado como uma equação ordinária diferencial. Para isso precisamos lembrar que em um instante qualquer Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t\leq t_{0}+\tau} , o valor da função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle ,x\left(t-\tau\right)} é dado no instante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle T=t-\tau} , mas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle T\leq t_{0}} , e nesta condição temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t\right)=\varphi\left(t\right)} . Isto é:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}\left(t\right)= & f\left(t,x\left(t\right),\varphi\left(t-\tau\right)\right) & t_{0}\leq t\leq & t_{0}+\tau\\ x\left(t_{0}\right)= & x_{0} & t= & t_{0}\end{align}}

Então se obtermos a solução Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t\right)=\varphi_{1}\left(t\right)} no segmento Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[t_{0},t_{0}+\tau\right]} , pode-se obter uma solução análoga para o próximo intervalo.

Exemplo:

Considerando o sistema:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}\left(t\right)= & 6x\left(t-1\right) & t\geq & 0\\ x\left(t\right)= & t & -1\leq t< & 0\end{align}}

Podemos observar que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{0}=0,\tau=1,\varphi\left(t\right)=t} e ainda Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t_{0}\right)=\varphi\left(t_{0}\right)} . Então para o intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[0,1\right]} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}\left(t\right)= & 6\varphi\left(t-1\right) & 0\leq t & \leq1\\ x\left(0\right)= & 0 & t & =0\end{align}}

Resolvendo então, uma vez que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \varphi\left(t-1\right)=t-1} , então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dx}{dt} & =6\left(t-1\right)\\ \int_{x\left(0\right)}^{x\left(t\right)}dx' & =6\int_{0}^{t}\left(t'-1\right)dt'\\ x\left(t\right) & =3t^{2}-6t\end{align}}

E para o intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[1,2\right]} , sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \varphi_{1}\left(t\right)=3t^{2}-6t} , agora temos o mesmo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \tau=1} , mas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t_{0}=1} , e novamente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle x\left(t_{0}\right)=\varphi_{1}\left(t_{0}\right)} . Então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x}\left(t\right)= & 6\varphi_{1}\left(t-1\right) & 1\leq t & \leq2\\ x\left(1\right)= & -3 & t & =1\end{align}} Logo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{dx}{dt} & =6\left(3\left(t-1\right)^{2}-6\left(t-1\right)\right)\\ \frac{dx}{dt} & =6\left(3t^{2}-6t+3-6t+6\right)\\ \frac{dx}{dt} & =6\left(3t^{2}-12t+9\right)\\ \int_{x\left(1\right)}^{x\left(t\right)}dx' & =6\int_{1}^{t}\left(3t'^{2}-12t+9\right)dt'\\ x\left(t\right)+3 & =6\left(3\left(\frac{t^{3}}{3}-\frac{1}{3}\right)-12\left(\frac{t^{2}}{2}-\frac{1}{2}\right)+9\left(t-1\right)\right)\\ x\left(t\right) & =6\left(t^{3}-1-6t^{2}+6+9t-9\right)-3\\ x\left(t\right) & =6t^{3}-36t^{2}+54t-27\end{align}}


A solução no intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left[0,2\right]} é então:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x\left(t\right) & =3t^{2}-6t & 0\leq t\leq1\\ x\left(t\right) & =6t^{3}-36t^{2}+54t-27 & 1\leq t\leq2\end{align}}

Principais materiais utilizados:


Anterior: Introdução à equações diferenciais com atraso | Índice: Ecologia | Próximo: Establidade em equações diferenciais com atraso