Método de Verlet: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 1: Linha 1:
= O método =
= Método de Verlet =


Para o [[método de Euler]] implícito havíamos utilizado a derivada a esquerda:
Para o [[método de Euler]] implícito havíamos utilizado a derivada a esquerda:
Linha 49: Linha 49:
Logo temos um erro <math display="inline">\mathcal{O}\left(\Delta t^{2}\right)</math> na velocidade. Além do erro de truncação associado ao método de dierenças finita e que decai com o decaimento de <math display="inline">\Delta t</math>, também podemos lembrar que um erro de arredondamento, pois o computador usa uma quantidade finita de memória para representar os números. Isto, é, existe um número <math display="inline">\epsilon</math> em que para qualquer número <math display="inline">\alpha\leq\epsilon</math> então <math display="inline">1+\alpha=1</math>. <math display="inline">\epsilon</math> é o maior número que pode ser somado a <math display="inline">1</math> sem alterar o resultado.
Logo temos um erro <math display="inline">\mathcal{O}\left(\Delta t^{2}\right)</math> na velocidade. Além do erro de truncação associado ao método de dierenças finita e que decai com o decaimento de <math display="inline">\Delta t</math>, também podemos lembrar que um erro de arredondamento, pois o computador usa uma quantidade finita de memória para representar os números. Isto, é, existe um número <math display="inline">\epsilon</math> em que para qualquer número <math display="inline">\alpha\leq\epsilon</math> então <math display="inline">1+\alpha=1</math>. <math display="inline">\epsilon</math> é o maior número que pode ser somado a <math display="inline">1</math> sem alterar o resultado.


= Exemplo =  
== Exemplo ==
 


Aplicando o algoritmo para o sistema massa-mola visto no [[Método de Euler-Cromer | método de Euler-Cromer]]:
Aplicando o algoritmo para o sistema massa-mola visto no [[Método de Euler-Cromer | método de Euler-Cromer]]:
Linha 83: Linha 82:
#plt.plot(t[:len(t)-1],E)
#plt.plot(t[:len(t)-1],E)
plt.plot(x[:len(x)-1],v)
plt.plot(x[:len(x)-1],v)
</pre>
= Método Velocidade de Verlet =
O método de verlet é similar ao leapfrog, mas é síncrono e não exige inicialização. Pela derivada à direita com uma variação de <math display="inline">\Delta t/2</math>, obtemos uma equação para velocidade:
<math display="block">a\left(t\right)\approx\frac{v\left(t+\Delta t/2\right)-v\left(t\right)}{\Delta t/2}\longrightarrow v\left(t+\Delta t/2\right)=v\left(t\right)+a\left(t\right)\frac{\Delta t}{2}\qquad\left(1\right)</math>
Fazendo o mesmo processo do leapfrog para a posição:
<math display="block">v\left(t+\Delta t/2\right)\approx\frac{x\left(t+\Delta t\right)-x\left(t\right)}{\Delta t}\longrightarrow x\left(t+\Delta t\right)=x\left(t\right)+v\left(t+\Delta t/2\right)\Delta t</math>
Ainda podemos reescrever, substituindo:
<math display="block">x\left(t+\Delta t\right)=x\left(t\right)+v\left(t\right)\Delta t+a\left(t\right)\frac{\Delta t^{2}}{2}\qquad\left(2\right)</math>
Isto é, partindo de um tempo <math display="inline">t</math> onde conhecemos posição e velocidade, calculamos a velocidade em <math display="inline">t+\frac{\Delta t}{2}</math> e usamos essa velociade para calcular a poição em <math display="inline">t+\Delta t</math>. Agora para a velocidade no instante <math display="inline">t+\Delta t</math> , começamo com uma derivada centrada:
<math display="block">v\left(t\right)=\frac{x\left(t+\Delta t\right)-x\left(t-\Delta t\right)}{2\Delta t}\longrightarrow v\left(t+\Delta t\right)=\frac{x\left(t+2\Delta t\right)-x\left(t\right)}{2\Delta t}\qquad\left(3\right)</math>
Então pegamos o método de Verlet e avançamos <math display="inline">\Delta t</math>:
<math display="block">\begin{align}
x\left(t+\Delta t\right) & =a\left(t\right)\Delta t^{2}-x\left(t-\Delta t\right)+2x\left(t\right)\\
x\left(t+2\Delta t\right) & =a\left(t+\Delta t\right)\Delta t^{2}-x\left(t\right)+2x\left(t+\Delta t\right)\end{align}</math>
E substituímos na velocidade (equação '''3'''):
<math display="block">\begin{align}
v\left(t+\Delta t\right) & =\frac{a\left(t+\Delta t\right)\Delta t^{2}-x\left(t\right)+2x\left(t+\Delta t\right)-x\left(t\right)}{2\Delta t}\\
= & a\left(t+\Delta t\right)\frac{\Delta t}{2}-+\frac{x\left(t+\Delta t\right)-x\left(t\right)}{\Delta t}\end{align}</math>
E usando então a equação para posição que encontramos (equação 2) para substituir <math display="inline">x\left(t+\Delta t\right)-x\left(t\right)</math> :
<math display="block">\begin{align}
v\left(t+\Delta t\right) & =a\left(t+\Delta t\right)\frac{\Delta t}{2}+\frac{x\left(t+\Delta t\right)-x\left(t\right)}{\Delta t}\\
= & v\left(t\right)+\left(a\left(t+\Delta t\right)+a\left(t\right)\right)\frac{\Delta t}{2}\end{align}</math>
Então agora utilizamos a posição em <math display="inline">t+\Delta t</math> para encontrarmos a velocidade no mesmo instante. Temos então:
<math display="block">\begin{align}
x\left(t+\Delta t\right) & =x\left(t\right)+v\left(t\right)\Delta t+a\left(t\right)\frac{\Delta t^{2}}{2}\\
v\left(t+\Delta t\right) & =v\left(t\right)+\left(a\left(t+\Delta t\right)+a\left(t\right)\right)\frac{\Delta t}{2}\end{align}</math>
Ou ainda simplesmente escrevendo explicitamente a equação '''1:'''
<math display="block">\begin{align}
v\left(t+\frac{\Delta t}{2}\right) & =v\left(t\right)+a\left(t\right)\frac{\Delta t}{2}\\
x\left(t+\Delta t\right) & =x\left(t\right)+v\left(t+\frac{\Delta t}{2}\right)\Delta t\\
v\left(t+\Delta t\right) & =v\left(t+\frac{\Delta t}{2}\right)+a\left(t+\Delta t\right)\frac{\Delta t}{2}\end{align}</math>
== Exemplo==
Resolvendo o mesmo exemplo anterior, temos:
<pre>
</pre>
</pre>


Linha 88: Linha 144:


# [https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/01%3A_Understanding_the_Derivative/1.06%3A_The_Second_Derivative The Second Derivative] (Matthew Boelkins, David Austin & Steven Schlicker; LibreTexts)
# [https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/01%3A_Understanding_the_Derivative/1.06%3A_The_Second_Derivative The Second Derivative] (Matthew Boelkins, David Austin & Steven Schlicker; LibreTexts)
# [https://www.physics.udel.edu/~bnikolic/teaching/phys660/numerical_ode/node5.html Verlet Method] (Brasnislav K. Nikolic, Universidae de Delaware)

Edição das 11h22min de 5 de março de 2022

Método de Verlet

Para o método de Euler implícito havíamos utilizado a derivada a esquerda:

Então se a segunda derivada é , pela definição, da derivada a direita:

Logo utilizando as aproximações:

Isolando então :

Temos o método de Verlet. Podemos notar que precisamos conhecer em dois tempos anteriores. Podemos utilizar outro algoritmo para o primeiro passo. Se é posição, então logo podemos reescrever:

Para calcular a energia, podemos obter a velocidade então utilizando a derivada centrada:

Alternativamente podemos obter o mesmo resultado em termos da expansão de Taylor:

Somando os dois termos, ficamos então com:

Obtemos então não só o algoritmo de Verlet, além de que sabemos que é uma expansão até a terceir ordem. Então o erro envolvido na truncação é , e este é o erro local, associao a um único passo.

Além disso, se fizermos a diferença, obtemos o algoritmo da velocidade:

Então:

Logo temos um erro na velocidade. Além do erro de truncação associado ao método de dierenças finita e que decai com o decaimento de , também podemos lembrar que um erro de arredondamento, pois o computador usa uma quantidade finita de memória para representar os números. Isto, é, existe um número em que para qualquer número então . é o maior número que pode ser somado a sem alterar o resultado.

Exemplo

Aplicando o algoritmo para o sistema massa-mola visto no método de Euler-Cromer:

Podemos ressaltar ainda que e .

import matplotlib.pyplot as plt            #Biblioteca para plotar gráficos
import numpy as np                         #Biblitoeca de cálculos científicos

#Constantes
m=1  ; k= 1.; w2= k/m
#Valores iniciais
x=[1]; v=[0]; t=[0] ; E=[k*(x[0]**2)/2+m*(v[0]**2)/2] 
#Parâmetros
dt  = 0.1 ; tau = 2*np.pi; tf=4*tau ; Np= int(tf/dt)

#Método de Euler-Cormer para obter o primeiro passo:
x.append(x[0]+dt*v[0])  
t.append(dt)

#Método de Verlet:
for it in range(1,Np):
  x.append(-w2*x[it]*dt*dt-x[it-1]+2*x[it]) #Método de Verlet
  v.append((x[it+1]-x[it-1])/(2*dt))
  E.append(k*x[it]**2/2+m*v[it]**2/2)
  t.append(dt+it*dt)

#plt.plot(t,x)
#plt.plot(t[:len(t)-1],v) #Velocidade tem um elemento a menos
#plt.plot(t[:len(t)-1],E)
plt.plot(x[:len(x)-1],v)

Método Velocidade de Verlet

O método de verlet é similar ao leapfrog, mas é síncrono e não exige inicialização. Pela derivada à direita com uma variação de , obtemos uma equação para velocidade:

Fazendo o mesmo processo do leapfrog para a posição:

Ainda podemos reescrever, substituindo:

Isto é, partindo de um tempo onde conhecemos posição e velocidade, calculamos a velocidade em e usamos essa velociade para calcular a poição em . Agora para a velocidade no instante , começamo com uma derivada centrada:

Então pegamos o método de Verlet e avançamos :

E substituímos na velocidade (equação 3):

E usando então a equação para posição que encontramos (equação 2) para substituir  :

Então agora utilizamos a posição em para encontrarmos a velocidade no mesmo instante. Temos então:

Ou ainda simplesmente escrevendo explicitamente a equação 1:


Exemplo

Resolvendo o mesmo exemplo anterior, temos:


Principais materiais utilizados

  1. The Second Derivative (Matthew Boelkins, David Austin & Steven Schlicker; LibreTexts)
  2. Verlet Method (Brasnislav K. Nikolic, Universidae de Delaware)