Método de Verlet: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 25: | Linha 25: | ||
Para calcular a energia, podemos obter a velocidade então utilizando a derivada centrada: <math display="block">v\left(t\right)=\dot{x}\left(t\right)=\frac{x\left(t+\Delta t\right)-x\left(t-\Delta t\right)}{2\Delta t}</math> | Para calcular a energia, podemos obter a velocidade então utilizando a derivada centrada: <math display="block">v\left(t\right)=\dot{x}\left(t\right)=\frac{x\left(t+\Delta t\right)-x\left(t-\Delta t\right)}{2\Delta t}</math> | ||
Alternativamente podemos obter o mesmo resultado em termos da expansão de Taylor: | |||
<math display="block">\begin{align} | |||
x\left(t+\Delta t\right) & =x\left(t\right)+v\left(t\right)\Delta t+\frac{1}{2}a\left(t\right)\Delta t^{2}+\frac{1}{6}a'\left(t\right)\Delta t^{3}+\dots\\ | |||
x\left(t-\Delta t\right) & =x\left(t\right)-v\left(t\right)\Delta t+\frac{1}{2}a\left(t\right)\Delta t^{2}-\frac{1}{6}a'\left(t\right)\Delta t^{3}+\dots\end{align}</math> | |||
Somando os dois termos, ficamos então com: | |||
<math display="block">x\left(t+\Delta t\right)+x\left(t-\Delta t\right)=2x\left(t\right)+a\left(t\right)\Delta t^{2}+\mathcal{O}\left(\Delta t^{4}\right)</math> | |||
Obtemos então não só o algoritmo de Verlet, além de que sabemos que é uma expansão até a terceir ordem. Então o erro envolvido na truncação é <math display="inline">\mathcal{O}\left(\Delta t^{4}\right)</math>, e este é o erro local, associao a um único passo. | |||
Além disso, se fizermos a diferença, obtemos o algoritmo da velocidade: | |||
<math display="block">x\left(t+\Delta t\right)+x\left(t-\Delta t\right)=2v\left(t\right)+\frac{1}{3}a'\left(t\right)\Delta t^{3}</math> | |||
Então: | |||
<math display="block">v\left(t\right)=\frac{x\left(t+\Delta t\right)+x\left(t-\Delta t\right)}{\Delta t}-\frac{1}{3}a'\left(t\right)\Delta t^{2}</math> | |||
Logo temos um erro <math display="inline">\mathcal{O}\left(\Delta t^{2}\right)</math> na velocidade. Além do erro de truncação associado ao método de dierenças finita e que decai com o decaimento de <math display="inline">\Delta t</math>, também podemos lembrar que um erro de arredondamento, pois o computador usa uma quantidade finita de memória para representar os números. Isto, é, existe um número <math display="inline">\epsilon</math> em que para qualquer número <math display="inline">\alpha\leq\epsilon</math> então <math display="inline">1+\alpha=1</math>. <math display="inline">\epsilon</math> é o maior número que pode ser somado a <math display="inline">1</math> sem alterar o resultado. | |||
<pre> | |||
</pre> | |||
= Principais materiais utilizados = | = Principais materiais utilizados = | ||
# [https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/01%3A_Understanding_the_Derivative/1.06%3A_The_Second_Derivative The Second Derivative] (Matthew Boelkins, David Austin & Steven Schlicker; LibreTexts) | # [https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/01%3A_Understanding_the_Derivative/1.06%3A_The_Second_Derivative The Second Derivative] (Matthew Boelkins, David Austin & Steven Schlicker; LibreTexts) |
Edição das 15h35min de 22 de fevereiro de 2022
Para o método de Euler implícito havíamos utilizado a derivada a esquerda:
Então se a segunda derivada é , pela definição, da derivada a direita:
Logo utilizando as aproximações:
Isolando então :
Temos o método de Verlet. Podemos notar que precisamos conhecer em dois tempos anteriores. Podemos utilizar outro algoritmo para o primeiro passo. Se é posição, então logo podemos reescrever:
Para calcular a energia, podemos obter a velocidade então utilizando a derivada centrada:
Somando os dois termos, ficamos então com:
Obtemos então não só o algoritmo de Verlet, além de que sabemos que é uma expansão até a terceir ordem. Então o erro envolvido na truncação é , e este é o erro local, associao a um único passo.
Além disso, se fizermos a diferença, obtemos o algoritmo da velocidade:
Então:
Logo temos um erro na velocidade. Além do erro de truncação associado ao método de dierenças finita e que decai com o decaimento de , também podemos lembrar que um erro de arredondamento, pois o computador usa uma quantidade finita de memória para representar os números. Isto, é, existe um número em que para qualquer número então . é o maior número que pode ser somado a sem alterar o resultado.
Principais materiais utilizados
- The Second Derivative (Matthew Boelkins, David Austin & Steven Schlicker; LibreTexts)