Mudanças entre as edições de "Belousov-Zhabotinsky"

De Física Computacional
Ir para: navegação, pesquisa
(Belousov-Zhabotinsky Reaction)
Linha 1: Linha 1:
 
== Belousov-Zhabotinsky Reaction ==
 
== Belousov-Zhabotinsky Reaction ==
  
A reação de Belousov-Zhabotinsky (BZ) consiste em uma família de reações químicas oscilatórias descobertas inicialmente por Belousov, e posteriormente analisadas por Zhabotinsky. A reação consiste em 3BrO<sub>3</sub><sup>−</sup> + 5CH<sub>2</sub>(CO<sub>2</sub>H)<sub>2</sub> + 3H<sup>+</sup>  → 3BrCH(CO<sub>2</sub>H)<sub>2</sub> + 4CO<sub>2</sub> + 5H<sub>2</sub>O + 2CH<sub>2</sub>O<sub>2</sub>, e demonstra um comportamento oscilatório não linear até atingir o equilíbrio químico. A interação entre a reação e a difusão dos produtos químicos no espaço resultará na auto-organização de ondas viajantes dinâmicas. Seu mecanismo original, foi descrito através de 27 espécies químicas e um total de 80 reações.
+
A reação de Belousov-Zhabotinsky<ref name=Sayama260>H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 287. Open SUNY Textbooks, Geneseo, NY, 2015.</ref> <ref name=Paper>HArzola-Flores J.A., García E., Rojas J.F, Spatial and temporal dynamics of Belousov-Zhabotinsky reaction: A STEM approach (2020), Revista Mexicana de Física E 17 (2) 178–190 </ref> (BZ) consiste em uma família de reações químicas oscilatórias descobertas inicialmente por Belousov, e posteriormente analisadas por Zhabotinsky. A reação consiste em 3BrO<sub>3</sub><sup>−</sup> + 5CH<sub>2</sub>(CO<sub>2</sub>H)<sub>2</sub> + 3H<sup>+</sup>  → 3BrCH(CO<sub>2</sub>H)<sub>2</sub> + 4CO<sub>2</sub> + 5H<sub>2</sub>O + 2CH<sub>2</sub>O<sub>2</sub>, e demonstra um comportamento oscilatório não linear até atingir o equilíbrio químico. A interação entre a reação e a difusão dos produtos químicos no espaço resultará na auto-organização de ondas viajantes dinâmicas. Seu mecanismo original, foi descrito através de 27 espécies químicas e um total de 80 reações.
  
 
[[Arquivo:BZReaction.gif|thumb|center|none|alt=Alt text|Reação de Belousov-Zhabotinsky em uma placa de Petri.|480px]]
 
[[Arquivo:BZReaction.gif|thumb|center|none|alt=Alt text|Reação de Belousov-Zhabotinsky em uma placa de Petri.|480px]]
  
 
== Oregonator ==
 
== Oregonator ==
Oregonator é um modelo matemático utilizado para descrever de forma mais simples a dinâmica da reação BZ, desenvolvido por Field e Noyes (1974). Foi um modelo não espacial originalmente composto por três variáveis de estado, onde posteriormente, vemos que tornam-se apenas duas. O mecanismo é, inicialmente composto por cinco etapas irreversíveis, onde, A = 3BrO<sub>3</sub> <sup>-</sup>, B = 5CH<sub>2</sub>(COOH)<sub>2</sub>; 2HCOOH, 3BrCH(COOH)<sub>2</sub> (no geral, estas e demais espécies orgânicas); P = HOBr; X = HBrO<sub>2</sub>; Y = Br<sup>-</sup>; Z = forma oxidada do catalisador e f = Coeficiente estequiométrico.
+
Oregonator<ref name=Paper>HArzola-Flores J.A., García E., Rojas J.F, Spatial and temporal dynamics of Belousov-Zhabotinsky reaction: A STEM approach (2020), Revista Mexicana de Física E 17 (2) 178–190 </ref> é um modelo matemático utilizado para descrever de forma mais simples a dinâmica da reação BZ, desenvolvido por Field e Noyes (1974). Foi um modelo não espacial originalmente composto por três variáveis de estado, onde posteriormente, vemos que tornam-se apenas duas. O mecanismo é, inicialmente composto por cinco etapas irreversíveis, onde, A = 3BrO<sub>3</sub> <sup>-</sup>, B = 5CH<sub>2</sub>(COOH)<sub>2</sub>; 2HCOOH, 3BrCH(COOH)<sub>2</sub> (no geral, estas e demais espécies orgânicas); P = HOBr; X = HBrO<sub>2</sub>; Y = Br<sup>-</sup>; Z = forma oxidada do catalisador e f = Coeficiente estequiométrico.
  
 
{|
 
{|
Linha 50: Linha 50:
 
  |}
 
  |}
  
Onde <math>\epsilon \equiv \tfrac{k_{5}[B]}{k-{3}[A]}</math>, <math> \epsilon ' \equiv \tfrac{2k_{4}k_{5}[B]}{k_{2}k_{3}[A]}</math> e <math>q \equiv \tfrac{2k_{4}k_{1}}{k_{2}k_{3}}</math>. Como parâmetro <math>\epsilon' \approx 10^{-5}</math>, é possível considerar a aproximação do estado estacionário da variável y, portanto, <math>y \equiv \tfrac{fz}{q+x}</math> então as equações são reduzidos para:
+
Onde <math>\epsilon \equiv \tfrac{k_{5}[B]}{k-{3}[A]}</math>, <math> \epsilon ' \equiv \tfrac{2k_{4}k_{5}[B]}{k_{2}k_{3}[A]}</math> e <math>q \equiv \tfrac{2k_{4}k_{1}}{k_{2}k_{3}}</math>. Como parâmetro <math>\epsilon' \approx 10^{-5}</math>, é possível considerar a aproximação do estado estacionário da variável y<ref name=Oreg>http://www.scholarpedia.org/article/Oregonator#Eq-4</ref>
 +
, portanto, <math>y \equiv \tfrac{fz}{q+x}</math> então as equações são reduzidos para:
  
 
: <math> \epsilon \frac{dx}{dt}= x(1-x) + f\frac{q-x}{q+x}z </math>
 
: <math> \epsilon \frac{dx}{dt}= x(1-x) + f\frac{q-x}{q+x}z </math>
Linha 67: Linha 68:
 
Antes de discretizarmos a equação para que assim possamos utiliza-la em um código, explicaremos brevemente métodos e fórmulas utilizados para isso.
 
Antes de discretizarmos a equação para que assim possamos utiliza-la em um código, explicaremos brevemente métodos e fórmulas utilizados para isso.
  
=== Método FTCS (Forward Time Centered Space) ===
+
=== Método FTCS (Forward Time Centered Space)<ref name=wiki>https://pt.wikipedia.org/wiki/Esquema_FTCS</ref> ===
 
De modo a resolver numericamente as equações descritas acima, serão utilizado o método FTCS (Forward Time Centered Space), que consiste em um método para resolver equações parciais através da derivada parcial de primeira ordem no tempo por uma diferença finita e progressiva e a derivada parcial de segunda ordem no espaço por uma diferença centrada, como vemos logo abaixo:
 
De modo a resolver numericamente as equações descritas acima, serão utilizado o método FTCS (Forward Time Centered Space), que consiste em um método para resolver equações parciais através da derivada parcial de primeira ordem no tempo por uma diferença finita e progressiva e a derivada parcial de segunda ordem no espaço por uma diferença centrada, como vemos logo abaixo:
  
Linha 92: Linha 93:
  
 
:<math> u_{i,j}^{n+1} = u_{C} + \left[u_{C}(1-u_{C}) + f\frac{q-u_{C}}{q+u_{C}}v_{C} + D_{u} \left(\frac{u_{R}+u_{L}+u_{U}+u_{D}-4u_{C}}{Dh^{2}}\right)\right]\frac{Dt}{\epsilon}</math>
 
:<math> u_{i,j}^{n+1} = u_{C} + \left[u_{C}(1-u_{C}) + f\frac{q-u_{C}}{q+u_{C}}v_{C} + D_{u} \left(\frac{u_{R}+u_{L}+u_{U}+u_{D}-4u_{C}}{Dh^{2}}\right)\right]\frac{Dt}{\epsilon}</math>
 
  
  
Linha 111: Linha 111:
  
  
== teste ==
+
== teste ==
  
 
condições iniciais  
 
condições iniciais  
Linha 124: Linha 124:
  
 
<math> v_{i,j}^{n+1} = v_{i,j}^{n} + (u_{i,j}^{n} - v_{i,j}^{n} + \nabla v (\frac{(v_{i+1,j}^{n} + v_{i-1,j}^{n} + v_{i,j+1}^{n} + v_{i,j-1}^{n} - 4v_{i,j}^{n})}{Dh^2})dt </math>
 
<math> v_{i,j}^{n+1} = v_{i,j}^{n} + (u_{i,j}^{n} - v_{i,j}^{n} + \nabla v (\frac{(v_{i+1,j}^{n} + v_{i-1,j}^{n} + v_{i,j+1}^{n} + v_{i,j-1}^{n} - 4v_{i,j}^{n})}{Dh^2})dt </math>
 +
 +
 +
 +
== Referências ==
 +
 +
<references/>

Edição das 10h30min de 30 de março de 2021

Belousov-Zhabotinsky Reaction

A reação de Belousov-Zhabotinsky[1] [2] (BZ) consiste em uma família de reações químicas oscilatórias descobertas inicialmente por Belousov, e posteriormente analisadas por Zhabotinsky. A reação consiste em 3BrO3 + 5CH2(CO2H)2 + 3H+ → 3BrCH(CO2H)2 + 4CO2 + 5H2O + 2CH2O2, e demonstra um comportamento oscilatório não linear até atingir o equilíbrio químico. A interação entre a reação e a difusão dos produtos químicos no espaço resultará na auto-organização de ondas viajantes dinâmicas. Seu mecanismo original, foi descrito através de 27 espécies químicas e um total de 80 reações.

Alt text
Reação de Belousov-Zhabotinsky em uma placa de Petri.

Oregonator

Oregonator[2] é um modelo matemático utilizado para descrever de forma mais simples a dinâmica da reação BZ, desenvolvido por Field e Noyes (1974). Foi um modelo não espacial originalmente composto por três variáveis de estado, onde posteriormente, vemos que tornam-se apenas duas. O mecanismo é, inicialmente composto por cinco etapas irreversíveis, onde, A = 3BrO3 -, B = 5CH2(COOH)2; 2HCOOH, 3BrCH(COOH)2 (no geral, estas e demais espécies orgânicas); P = HOBr; X = HBrO2; Y = Br-; Z = forma oxidada do catalisador e f = Coeficiente estequiométrico.

A + Y X + P
X + Y 2 P
A + X 2 X + 2 Z
2 X A + P
B + Z Y

Aplicando, então, as equações de taxa, onde v é a taxa da reação e ki corresponde às constantes de taxa de reação:

v1 = k1 [A][Y] v2 = k2 [X][Y] v3 = k3 [A][X] v4 = k4 [X]2 v5 = k5 [B][Z]

Para construir o modelo Oregonator, é necessário supor que as concentrações de A e B permaneçam constantes (estão associadas às concentrações iniciais dos precursores). Posteriormente, deve-se aplicar as técnicas padrão de cinética química para obter o modelo dinâmico considerando X, Y e Z como variáveis dinâmicas, assumindo que as reações químicas são elementares, ou seja, os coeficientes estequiométricos coincidem com a potência das variáveis dinâmicas. Considerando como o tempo, vemos as seguintes equações de velocidade:

A análise é simplificada convertendo essas equações em uma forma adimensional:

A partir de operações algébricas com as equações acima, obtemos para x, y e z, o seguinte sistema de equações diferenciais não lineares:

Onde , e . Como parâmetro , é possível considerar a aproximação do estado estacionário da variável y[3] , portanto, então as equações são reduzidos para:


Dessa forma, o modelo de Oregonator mostra a forma típica de um sistema de feedback químico, ou seja, a variável x, que será reescrito como u, funciona como um ativador, enquanto a variável z, que será reescrita como v, tem o papel de inibidor. Se para as equações termos associados à difusão são adicionados, onde Du e Dv são os coeficientes de difusão adimensionais, e é o operador Laplaciano, então, o sistema torna-se:



Implementação

Antes de discretizarmos a equação para que assim possamos utiliza-la em um código, explicaremos brevemente métodos e fórmulas utilizados para isso.

Método FTCS (Forward Time Centered Space)[4]

De modo a resolver numericamente as equações descritas acima, serão utilizado o método FTCS (Forward Time Centered Space), que consiste em um método para resolver equações parciais através da derivada parcial de primeira ordem no tempo por uma diferença finita e progressiva e a derivada parcial de segunda ordem no espaço por uma diferença centrada, como vemos logo abaixo:


Laplaciano

...para a aplicação em vetores de duas dimensões, o laplaciano será aplicado desta forma:

De modo a simplificar a expressão para analises posteriores, reescreveremos desta forma, considerando uma analise 2D:


Aplicação dos Métodos para a Reação de Belousov-Zhabotinsky

Considerando a equação :



Considerando a equação :






teste

condições iniciais

se 0 < 8(0.01i - 0.5) < (0.01j - 0.5) senão = 0

se 0 < -(0.01j - 0.5) < 8(0.01i - 0.5) senão = 0





Referências

  1. H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 287. Open SUNY Textbooks, Geneseo, NY, 2015.
  2. 2,0 2,1 HArzola-Flores J.A., García E., Rojas J.F, Spatial and temporal dynamics of Belousov-Zhabotinsky reaction: A STEM approach (2020), Revista Mexicana de Física E 17 (2) 178–190
  3. http://www.scholarpedia.org/article/Oregonator#Eq-4
  4. https://pt.wikipedia.org/wiki/Esquema_FTCS