Belousov-Zhabotinsky Reaction
A reação de Belousov-Zhabotinsky[1] [2] (BZ) consiste em uma família de reações químicas oscilatórias descobertas inicialmente por Belousov, e posteriormente analisadas por Zhabotinsky. A reação consiste em 3BrO3− + 5CH2(CO2H)2 + 3H+ → 3BrCH(CO2H)2 + 4CO2 + 5H2O + 2CH2O2, e demonstra um comportamento oscilatório não linear até atingir o equilíbrio químico. A interação entre a reação e a difusão dos produtos químicos no espaço resultará na auto-organização de ondas viajantes dinâmicas. Seu mecanismo original, foi descrito através de 27 espécies químicas e um total de 80 reações.
Reação de Belousov-Zhabotinsky em uma placa de Petri.
[3]
Oregonator
Oregonator[2] é um modelo matemático utilizado para descrever de forma mais simples a dinâmica da reação BZ, desenvolvido por Field e Noyes (1974). Foi um modelo não espacial originalmente composto por três variáveis de estado, onde posteriormente, vemos que tornam-se apenas duas. O mecanismo é, inicialmente composto por cinco etapas irreversíveis, onde, A = 3BrO3 -, B = 5CH2(COOH)2; 2HCOOH, 3BrCH(COOH)2 (no geral, estas e demais espécies orgânicas); P = HOBr; X = HBrO2; Y = Br-; Z = forma oxidada do catalisador e f é o coeficiente estequiométrico. Observamos também. suas respectivas equações de taxa, onde v é a taxa da reação e ki corresponde às constantes de taxa de reação:
|
|
A + Y |
|
X + P |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v1 = k1 [A][Y]
|
|
|
X + Y |
|
2 P |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v2 = k2 [X][Y]
|
|
|
A + X |
|
2 X + 2 Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v3 = k3 [A][X]
|
|
|
2 X
|
|
A + P |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v4 = k4 [X]2
|
|
|
B + Z
|
|
Y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v5 = k5 [B][Z]
|
Para construir o modelo Oregonator, é necessário supor que as concentrações de A e B permaneçam constantes (estão associadas às concentrações iniciais dos precursores). Posteriormente, deve-se aplicar as técnicas padrão de cinética química para obter o modelo dinâmico considerando X, Y e Z como variáveis dinâmicas, assumindo que as reações químicas são elementares, ou seja, os coeficientes estequiométricos coincidem com a potência das variáveis dinâmicas. Considerando como o tempo, vemos as seguintes equações de velocidade:
|
|
|
|
|
A análise é simplificada convertendo essas equações em uma forma adimensional:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A partir de operações algébricas com as equações acima, obtemos para x, y e z, o seguinte sistema de equações diferenciais não lineares:
Onde , e , e seus respectivos valores típicos são , e . Como o parâmetro (que é obtido através de reações experimentais), é possível ver que y muda na escala do tempo de forma muito mais rápida que as demais variaveis, e então, assumimos que é sempre determinado pelos valores instantâneos de e , e assim, reescrevemos y como :. Deste modo, as equações são reduzidas para [4]:
Dessa forma, o modelo de Oregonator mostra a forma típica de um sistema de feedback químico, ou seja, a variável x, que será reescrito como u, funciona como um ativador, enquanto a variável z, que será reescrita como v, tem o papel de inibidor. Se para as equações termos associados à difusão são adicionados, onde Du e Dv são os coeficientes de difusão adimensionais, e é o operador Laplaciano, então, o sistema torna-se:
Implementação
Antes de discretizarmos a equação para que assim possamos utiliza-la em um código, explicaremos brevemente métodos e fórmulas utilizados para isso.
Método FTCS (Forward Time Centered Space)[5]
De modo a resolver numericamente as equações descritas acima, serão utilizado o método FTCS (Forward Time Centered Space), que consiste em um método para resolver equações parciais através da derivada parcial de primeira ordem no tempo por uma diferença finita e progressiva e a derivada parcial de segunda ordem no espaço por uma diferença centrada, como vemos logo abaixo:
Laplaciano
O Laplaciano pode tanto ser representado por quanto por .
O laplaciano é a soma de todas as derivadas parciais simples de segunda ordem:
Seja
Como o código para Belousov-Zhabotinsky terá apenas 2 dimensões o ficará da seguinte forma:
De modo a simplificar a expressão para analises posteriores, reescreveremos desta forma, considerando uma analise 2D:
Aplicação dos Métodos para a Reação de Belousov-Zhabotinsky
Considerando a equação :
Considerando a equação :
Resultados
Analise da concentração de u com
|
|
|
|
|
|
|
|
|
|
BZ com
|
BZ da concentração de até t = 20k.
|
BZ da concentração de até t = 20k.
|
Programas Utilizados
Simulaçao Belousov-Zhabotinsky
Referências
- ↑ H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 287. Open SUNY Textbooks, Geneseo, NY, 2015.
- ↑ 2,0 2,1 Harzola-Flores J.A., García E., Rojas J.F, Spatial and temporal dynamics of Belousov-Zhabotinsky reaction: A STEM approach (2020), Revista Mexicana de Física E 17 (2) 178–190
- ↑ https://gfycat.com/uk/discover/belousov-zhabotinsky-reaction-gifs
- ↑ http://www.scholarpedia.org/article/Oregonator#Eq-4
- ↑ https://pt.wikipedia.org/wiki/Esquema_FTCS