Método de Runge-Kutta 2ª e 4ª ordem
Runge-Kutta 2ª ordem
No método explícito de euler tínhamos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y_{n+1} & =y_{n}+f\left(t_{n},y_{n}\right)\Delta t\end{align}}
Sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \frac{dy}{dt}=f\left(t,y\right)} . Podemos reescrever como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y_{n+1} & =y_{n}+ak_{1}\end{align}}
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a=1} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{1}=f\left(t_{n},y_{n}\right)\Delta t} . Agor se supormos uma solução:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y_{n+1} & =y_{n}+ak_{1}+bk_{2}\qquad\left(1\right)\end{align}} Com o termo adicional dependendo de uma posição genérica Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle y_{n}+cf\left(t_{n},y_{n}\right)\Delta t} em um tempo genérico Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle t+d\Delta t} , isto é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}=f\left(t_{n}+d\Delta t,y_{n}+cf\left(t_{n},y_{n}\right)\Delta t\right)\Delta t} . Usando o fato de que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{1}=f\left(t_{n},y_{n}\right)\Delta t} , podemos escrever então que:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{1}=f\left(t_{n},y_{n}\right)\Delta t}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}=f\left(t_{n}+d\Delta t,y_{n}+ck_{1}\right)\Delta t}
Agora lembrando a expansão em série de taylor que também vimos no método explícito e Euler:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\left(t+\Delta t\right)=y\left(t\right)+y'\left(t\right)\Delta t+y''\left(t\right)\frac{\Delta t^{2}}{2}+\sum_{n=3}^{\infty}y^{\left(n\right)}\left(t\right)\frac{\Delta t^{n}}{n!}}
Abrindo a segunda derivada, temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y''\left(t\right)=\frac{d^{2}}{dt^{2}}y\left(t\right) & =\frac{d}{dt}f\left(t,y\right)=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial y}\frac{dy}{dt}=\frac{\partial f}{\partial t}+f\left(t,y\right)\frac{\partial f}{\partial y}\end{align}}
Substituindo então, e escrevendo apenas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \mathcal{O}\left(\Delta^{3}\right)=\sum_{n=3}^{\infty}y^{\left(n\right)}\left(t\right)\frac{\Delta t^{n}}{n!}} , temos a seguinte expansão em série de Taylor:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\left(t+\Delta t\right)=y\left(t\right)+y'\left(t\right)\Delta t+\left(\frac{\partial f}{\partial t}+f\left(t,y\right)\frac{\partial f}{\partial y}\right)\frac{\Delta t^{2}}{2}+\mathcal{O}\left(\Delta^{3}\right)\qquad\left(2\right)}
Vamos expandir Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}} . Uma expansão de Taylor de primeira ordem para uma função de 2 variáveis em torno de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(a,b\right)} é dado por[1]:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x,y\right)\approx f\left(a,b\right)+f_{x}\left(a,b\right)\left(x-a\right)+f_{y}\left(a,b\right)\left(y-b\right)}
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f_{a}} denota a derivada da função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f} na variável Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a} . Para o nosso caso, temos então para uma expansão em torno de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(x,y\right)} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x+\Delta x,y+\Delta y\right)\approx f\left(x,y\right)+f_{x}\left(x,y\right)\Delta x+f_{y}\left(x,y\right)\Delta y}
Expandindo então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}} em torno de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \left(t_{n},y_{n}\right)} temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{2}\approx\left[f\left(t_{n},y_{n}\right)+d\Delta t\frac{\partial}{\partial t}f\left(t_{n},y_{n}\right)+ck_{1}\frac{\partial}{\partial y}f\left(t_{n},y_{n}\right)\right]\Delta t}
Aqui podemos notar que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle \Delta t} multiplica a expansão da função, então quando desprezamos os termos de segunda ordem da expansão de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle f\left(x+\Delta x,y+\Delta y\right)} , deprezamos os termos de terceira ordem de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}} . Substituindo então o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}} aproximado e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{1}} na equação 1, temos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{n+1}=y_{n}+af\left(t_{n},y_{n}\right)\Delta t+b\left[f\left(t_{n},y_{n}\right)+d\Delta t\frac{\partial}{\partial t}f\left(t_{n},y_{n}\right)+cf\left(t_{n},y_{n}\right)\Delta t\frac{\partial}{\partial y}f\left(t_{n},y_{n}\right)\right]\Delta t}
Manipulando:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{n+1}=y_{n}+\left(a+b\right)f\left(t_{n},y_{n}\right)\Delta t+\left[2bd\frac{\partial}{\partial t}f\left(t_{n},y_{n}\right)+2bcf\left(t_{n},y_{n}\right)\frac{\partial}{\partial y}f\left(t_{n},y_{n}\right)\right]\frac{\Delta t^{2}}{2}\qquad\left(3\right)}
Comparando a aproximação 3 com a expansão 2 temos a seguinte relação:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} a+b & =1\\ bd & =\frac{1}{2}\\ bc & =\frac{1}{2}\end{align}} Diferentes conjuntos de valore satisfazem este sistema. O método do ponto médio é obtido se ecolhermos: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle d=c=\frac{1}{2}} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle b=1} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a=-1} :
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}=f\left(t_{n}+\frac{\Delta t}{2},y_{n}+\frac{k_{1}}{2}\right)\Delta t}
Então:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y_{n+1} & =y_{n}+f\left(t_{n}+\frac{\Delta t}{2},y_{n}+f\left(t_{n},y_{n}\right)\frac{\Delta t}{2}\right)\Delta t\end{align}}
O método de Heun é obtido se for escolhido Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle a=b=\frac{1}{2}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle c=d=1} :
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{1}=f\left(t_{n},y_{n}\right)\Delta t}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\textstyle k_{2}=f\left(t_{n}+\Delta t,y_{n}+k_{1}\Delta t\right)\Delta t}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} y_{n+1} & =y_{n}+\left(k_{1}+k_{2}\right)\frac{1}{2}\end{align}}
Uma observação, é que o erro global no algoritmo de Runge-Kutta de segunda ordem é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}\left(\Delta^{2}\right) </math) e o local é <math>\mathcal{O}\left(\Delta^{3}\right) } .
Exemplo
Runge-Kutta 4ª ordem
Exemplo
Principais materiais utilizados
- Runge-Kutta Methods (Michael Zeltkevic, Instituto de Tecnologia de Massachusetts)
- Second Order Runge-Kutta (Erik Cheever, Swarthmore)
Citações
- ↑ [https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Multivariable_Calculus/3%3A_Topics_in_Partial_Derivatives/Taylor__Polynomials_of_Functions_of_Two_Variables Taylor Polynomials of Functions of Two Variables ] ( Paul Seeburger, LibreTexts)