Modelo Brusselator de Reação-Difusão

De Física Computacional
Ir para navegação Ir para pesquisar

Grupo: Carolina Lenzi, Eric Naiber e Vitória Xavier

Figura 1: Variação da concentração em um recipiente de 100x100. Áreas em amarelo correspondem a uma grande quantidade de reagente U.

O objetivo deste trabalho é implementar o modelo de reação-difusão Brusselator em duas dimensões, frequentemente utilizado para estudar sistemas complexos químicos e biológicos. O modelo é um sistema não linear de equações diferenciais parciais e foi proposto em 1970 por Ilya Prigogine e seus colaboradores da Universidade Livre de Bruxelas. Desde então tem sido aplicado para analisar reações oscilatórias e autocatalíticas. O método computacional utilizado para implementar o modelo foi o método FTCS (Forward Time Centered Space).

Modelo de Brusselator

O estudo de sistemas químicos e biológicos frequentemente requer o uso de modelos que caracterizam reações de reação-difusão. Um dos modelos mais utilizados é o modelo de Brusselator, que é utilizado para descrever o mecanismo químico de reação-difusão com oscilações não lineares. [J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973) 3919.] Turing [ref?] observou que quando determinadas reações são associadas a difusão, é possível obter um padrão espacial estável, e isso leva a teoria de morfogênese. Além de processos de reação-difusão, o modelo Brusselator é observado em reações enzimáticas e na física de plasma e de lasers.

O mecanismo de Brusselator proposto por Prigogine (1970) é dado por [I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)]:

(1.a)
(1. b)
(1.c)
(1.d)

Onde U e V são as espécies químicas de interesse. Assumimos A e B em excesso para que o sistema não atinja o equilíbrio. Esse sistema químico foi importante para o avanço na área de sistemas complexos porque possibilita o uso de modelos matemáticos de duas dimensões, já que U e V são variáveis dependentes, e admite “limit-cycle oscilations”. [ R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971) 267.].

As equações diferenciais parciais associadas com o sistema Brusselator são dadas por(G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)):

onde e são as concentrações a serem investigadas em função de tempo e espaço, e são constantes relativas às concentrações dos reagentes A e B, e e constantes de difusão.

A solução analítica do sistema reação-difusão Brusselator ainda não é conhecida e por isso há o interesse de explorá-la numericamente.

Análise da estabilidade do sistema

Análise de ponto crítico

Considerando o sistema livre de difusão, quando :


Onde e e e são constantes positivas e reais. A matriz jacobiana no ponto crítico é dada por


Os autovalores de são os valores que satisfazem a equação caracterísitca

Os autovalores claramente mostram dependência em e no determinante . Esses autovalores governam a estabilidade do ponto crítico ou determinam a existência de um ciclo limite. As propriedades de estabilidade ou a existência de um ciclo limite estão sumarizadas na tabela abaixo, em relação a figura 1.

[[Arquivo:]]

Utilizando a teoria Hopf, é mostrado que o ponto crítico perde sua estabilidade quando A e B movem da região 2 para região 3, na figura 1, atravessando a curva . Uma bifurcação Hopf ocorre quando ao passo que essa curva é atravessada e um ciclo limite estável existe para A e B nas regiões 1 e 2, mas não para A e B nas regiões 3 e 4.

Conclui-se que a curva governa a estabilidade do sistema.


Análise de ponto fixo

O estado estacionário do sistema pode ser encontrado igualando o coeficiente de difusão, e portanto as derivadas parciais, a zero. Percebe-se que esse sistema converge para os pontos fixos:

Em [twizell] a manipulação da matriz jacobiana nos pontos fixos resulta nos seguintes autovalores


Onde fica claro que os denominadores dos autovalores são sempre positivos quando and . As inequações

e

São verdadeiras sempre que . Portanto, uma condição suficiente para o ponto fixo atrair a sequência gerada pelo sistema é .

Ainda em [Twizell] o modelo reação-difusão Brusselator foi discretizado e a análise dos pontos fixos concluiu que o sistema converge para e , sendo esse o único estado estacionário do sistema.

Concluiu que também que o sistema apresenta estado oscilatório quando

Estado em que o sistema não converge para nenhum ponto.


Método FTCS

O FTCS (Forward Time Centered Space) é um método de diferença finita que utiliza a derivada à direita ("para frente") no tempo e a derivada segunda centralizada no espaço para discretizar as variáveis. As derivadas no tempo e no espaço bidimensional ficam:


Substituindo nas equações do Brusselator

onde e são as funções que representam a reação sem difusão.


Utilizamos discretização do tipo


Utilizando a notação , assumindo e rearranjando os termos, reescrevemos as equações como


onde e .

Análise de estabilidade do método

Resultados

Esta seção se dedica ao resultados da simulação, utilizando valores de constantes de outros artigos como o [Nome do artigo e referência]. As constantes utilizadas foram identificadas na próxima subseção, com exceção nos gráficos em que indicamos outros valores. As simulações mostram o caráter oscilatório do Brusselator ao longo do tempo e também como se da a reação e difusão em um recipiente em duas dimensões. O código utilizado (incompleto) estará logo após a seção de resultados.

Definindo Constantes

Durante as simulações em 2D foram utilizados no código:


Tabela de Constantes e Valores
Símbolo Nome Valor
Dimensão analisada ao longo do eixo x. 50
Dimensão analisada ao longo do eixo y. 50
Constante relativa à concentração do reagente A. 1
Constante relativa à concentração do reagente B. 1.7
Constante de difusão do reagente U. 0.1
Constante de difusão do reagente V. 1
Concentração de u no tempo inicial (t=0). 1
Concentração de v no tempo inicial (t=0). 2
Passo de tempo entre iterações. 0.1
Unidade de avanço dos eixos no espaço. 1


Constantes que dependem diretamente de outros parâmetros não recebem um valor fixo, como é o caso de e que são constantes de estabilidade. Utilizamos estes valores pois foi utilizado no artigos[1]. Já as posições das condições iniciais foram escolhidas arbitrariamente, tendo um total de 6 modos que serão explicados logo à frente, sendo eles:

  1. Condição em formato do sinal "+".
  2. Condição de borda.
  3. Condição aleatória.
  4. Condição de nove pontos centrais.
  5. Condição da borda completa.

Simulação

No gráfico abaixo podemos notar o caráter ondulatório da variação da concentração ao longo do tempo, as linhas (azul e vermelho) significam a taxa de concentração no recipiente.

Note que quando diminui, aumenta rapidamente, mantendo-se um ciclo oscilatório em que a amplitude da onda de e vão diminuindo ao longo do tempo, como mostrado nas figuras.

Figura 1: Gráfico de concentrações.

Pensando no gráfico da reação-difusão como ondas, é correto afirmar que ambas juntas formam um padrão de interferência destrutivo. A animação abaixo mostra exatamente este comportamento, observando o reagente no gráfico da direita. Note que quando o ponto do gráfico da esquerda chega ao mínimo local, o valor de é alto e o de muito baixo, fazendo com que o gráfico da direita fique muito amarelo (amarelo significa uma alta concentração de sendo formada).

Figura 2:: Comportamento do reagente.



Condições Iniciais

Para observar melhor os resultados, foram feitas diversas condições iniciais que foram separadas em tópicos citados em Definindo Constantes.

Levando em consideração que u_n é um array de tamanho por .

Condição em Formato do Sinal "+"

O reagente é distribuído no centro formando um sinal de "+".

# Centro
u_n[int(Nx / 2), int(Ny / 2)] = u0

# Lateral do sinal
#       X                   Y
u_n[int(Nx / 2) + 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) - 1, int(Ny / 2)] = u0

# Altura do sinal
#       X                   Y
u_n[int(Nx / 2), int(Ny / 2) + 1] = u0
u_n[int(Nx / 2), int(Ny / 2) - 1] = u0

Condição de borda

O reagente foi distribuído nos 4 cantos do recipiente.

# Sup Esq
v_n[0, 0] = v0

# Sup Dir
v_n[0, Nx - 1] = v0

# Inf Esq
v_n[Nx - 1, 0] = v0

# Inf Dir
v_n[Nx - 1, Nx - 1] = v0
  1. Condição aleatória; coloca uma quantia aleatória de pontos em qualquer posição, para e .
  2. Condição de nove pontos centrais; no centro divide 9 pontos com espaçamento de , para .
  3. Condição da borda completa; completa toda a borda do recipiente com reagente .

Implementação

O método foi implementado em Python, considerando , variando as constantes e e as condições iniciais do problema.

  • Código completo no GitHub[1]
import numpy as np

# Constantes
Nx = Ny = 25
a = 1
b = 1.7
Du = 0.1
Dv = 1
t_max = 40
dt = 0.1
ds = 1

ku = Du * dt / (ds ** 2)
kv = Dv * dt / (ds ** 2)

# Valores iniciais
u0 = 1
v0 = 2
t = 0


def f(u, v):
    return a - (b + 1) * u + u * u * v



def g(u, v):
    return b * u - u * u * v


# vetores no tempo n
u_n = np.zeros((Nx, Ny))
v_n = np.zeros((Nx, Ny))

# vetores no tempo n+1
u_n1 = np.zeros((Nx, Ny))
v_n1 = np.zeros((Nx, Ny))

# Condições iniciais (u e v distribuidos aleatoriamente no espaço
for _ in range(randint(int(Nx / 5), Nx)):
    u_n[randint(0, size), randint(0, size)] = u0
for _ in range(randint(int(Nx / 5), Nx)):
    v_n[randint(0, size), randint(0, size)] = v0

# FTCS
while t < t_max:
    for i in range(Nx):
        i_e = (i - 1) % Nx  # vizinho a esquerda de 0 é o da ultima posicao
        i_d = (i + 1) % Nx  # vizinho a direita da ultima posicao é o zero

        for j in range(Ny):
            j_e = (j - 1) % Ny
            j_d = (j + 1) % Ny

            u_n1[i, j] = u_n[i, j] + dt * f(u_n[i, j], v_n[i, j]) + ku * (u_n[i_e, j] + u_n[i_d, j] + u_n[i, j_e] + u_n[i, j_d] - 4 * u_n[i, j])
            v_n1[i, j] = v_n[i, j] + dt * g(u_n[i, j], v_n[i, j]) + kv * (v_n[i_e, j] + v_n[i_d, j] + v_n[i, j_e] + v_n[i, j_d] - 4 * v_n[i, j])

    # atualizar u_n e v_n
    for i in range(Nx):
        for j in range(Ny):
            u_n[i, j] = u_n1[i, j]
            v_n[i, j] = v_n1[i, j]

    t += dt

Referências

  1. Morphology of Experimental and Simulated Turing Patterns, Christian Scholz, August 2009, Pgs 27-29