Modelo Brusselator de Reação-Difusão
Grupo: Carolina Lenzi, Eric Naiber e Vitória Xavier
O objetivo deste trabalho é implementar o modelo de reação-difusão Brusselator em duas dimensões, frequentemente utilizado para estudar sistemas complexos químicos e biológicos. O modelo é um sistema não linear de equações diferenciais parciais e foi proposto em 1968 por Ilya Prigogine e seus colaboradores da Universidade Livre de Bruxelas. Desde então tem sido aplicado para analisar reações oscilatórias e autocatalíticas. O método computacional utilizado para implementar o modelo foi o método FTCS (Forward Time Centered Space).
Modelo de Brusselator
O estudo de sistemas químicos e biológicos frequentemente requer o uso de modelos que caracterizam reações de reação-difusão. Um dos modelos mais utilizados é o modelo de Brusselator, que é utilizado para descrever o mecanismo químico de reação-difusão com oscilações não lineares. [1]. Turing observou que quando determinadas reações são associadas a difusão, é possível obter um padrão espacial estável, e isso leva a teoria de morfogênese[2]. Além de processos de reação-difusão, o modelo Brusselator é observado em reações enzimáticas e na física de plasma e de lasers.
O mecanismo de Brusselator proposto por Prigogine[3] é dado por:
- (1.a)
- (1. b)
- (1.c)
- (1.d)
Onde U e V são as espécies químicas de interesse. Assumimos A e B em excesso para que o sistema não atinja o estado de equilíbrio. Esse sistema químico foi importante para o avanço na área de sistemas complexos porque possibilita o uso de modelos matemáticos de duas dimensões, já que U e V são variáveis dependentes, e admite oscilações de ciclo limite[4].
As equações diferenciais parciais associadas com o sistema Brusselator[5] são dadas por:
onde e são as concentrações a serem investigadas em função de tempo e espaço, e são constantes relativas às concentrações dos reagentes A e B, e e são as constantes de difusão de U e V.
A solução analítica do sistema reação-difusão Brusselator ainda não é conhecida e por isso há o interesse de explorá-la numericamente.
Análise da estabilidade do sistema
Análise de ponto crítico
Considerando o sistema livre de difusão, quando :
Encontramos os pontos críticos do sistema igualando as derivadas à zero. Obtemos que o único ponto crítico é . A matriz jacobiana no ponto crítico é dada por
Os autovalores de são os valores que satisfazem a equação caracterísitca
Os autovalores claramente mostram dependência em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-b+a^2} e no determinante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta = (1 - b + a^2)^2 - 4a^2} . Esses autovalores governam a estabilidade do ponto crítico e determinam a existência de um ciclo limite. Conforme discutido em Twizell[6], quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Re(\lambda) < 0 } o sistema é estável e não existe ciclo limite. Já para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Re(\lambda) > 0 } o sistema é instável e existe ciclo limite.
Análise de ponto fixo
Ainda em Twizell[6], foi feita a análise de ponto fixo. O único ponto fixo encontrado é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^*, v^*) = \left ( a, \frac{b}{a} \right)} . Manipulando a matriz Jacobiana nesse ponto e analisando os autovalores, obtém-se que a solução é atraída para o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left ( a, \frac{b}{a} \right)} se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-b+a^2 > 0} . Caso contrário, a solução não converge.
Método FTCS
O FTCS (Forward Time Centered Space) é um método de diferença finita que utiliza a derivada à direita ("para frente") no tempo e a derivada segunda centralizada no espaço para discretizar as variáveis. As derivadas no tempo e no espaço bidimensional ficam:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial f(x, y, t)}{\partial t} \to \frac{f(x, y, t + \Delta t) - f(x, y, t)}{\Delta t} + \mathcal{O}(\Delta t ^2) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 f(x, y, t)}{\partial x^2} \to \frac{f(x-\Delta x, y, t) - 2f(x, y, t) + f(x+\Delta x, y, t)}{(\Delta x)^2} + \mathcal{O}(\Delta x ^3) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 f(x, y, t)}{\partial y^2} \to \frac{f(x, y-\Delta y, t) - 2f(x, y, t) + f(x, y+\Delta y, t)}{(\Delta y)^2} + \mathcal{O}(\Delta y ^3) }
Substituindo nas equações do Brusselator
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u(x, y, t + \Delta t) - u(x, y, t)}{\Delta t} = f(u, v) + D_u \left( \frac{u(x-\Delta x, y, t) - 2u(x, y, t) + u(x+\Delta x, y, t)}{(\Delta x)^2} + \frac{u(x, y-\Delta y, t) - 2u(x, y, t) + u(x, y+\Delta y, t)}{(\Delta y)^2} \right) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{v(x, y, t + \Delta t) - v(x, y, t)}{\Delta t} = g(u, v) + D_v \left( \frac{v(x-\Delta x, y, t) - 2v(x, y, t) + v(x+\Delta x, y, t)}{(\Delta x)^2} + \frac{v(x, y-\Delta y, t) - 2v(x, y, t) + v(x, y+\Delta y, t)}{(\Delta y)^2} \right) }
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(u, v)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(u, v)} são as funções que representam a reação sem difusão.
Utilizamos discretização do tipo
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 0, 1\Delta t, 2\Delta t, 3\Delta t, ..., t_{max}}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 0, 1\Delta x, 2\Delta x, 3\Delta x, ..., N_x}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = 0, 1\Delta y, 2\Delta y, 3\Delta y, ..., N_y}
Utilizando a notação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(i\Delta x, j\Delta y, n\Delta t) = f_{i,j}^n}
, assumindo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x = \Delta y = \Delta s}
e rearranjando os termos, reescrevemos as equações como
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{i,j}^{n+1} = u_{i, j}^n + f(u_{i,j}^n, v_{i, j}^n)\Delta t + K_u (u_{i-1, j}^n + u_{i+1, j}^n + u_{i, j-1}^n + u_{i, j+1}^n - 4 u_{i, j}^n) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{i,j}^{n+1} = v_{i, j}^n + g(u_{i,j}^n, v_{i, j}^n)\Delta t + K_v (v_{i-1, j}^n + v_{i+1, j}^n + v_{i, j-1}^n + v_{i, j+1}^n - 4 v_{i, j}^n) }
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_u = \frac{D_u \Delta t}{(\Delta s)^2}}
e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_v = \frac{D_v \Delta t}{(\Delta s)^2}}
.
Análise de estabilidade
A análise de estabilidade do método FTCS pode ser feita com a análise local de von Neumann. Para isso precisamos linearizar as equações do modelo Brusselator e escrever as soluções em modos de Fourier, da seguinte forma:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta u_{i, j}^{n+1} = \delta u_{i, j}^n + K_u \left( \delta u_{i+1, j}^n + \delta u_{i-1, j}^n + \delta u_{i, j+1}^n + \delta u_{i, j-1}^n - 4 \delta u_{i, j}^n \right) + \Delta t f_u \delta u_{i, j}^n + \Delta t f_v \delta v_{i, j}^n }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta v_{i, j}^{n+1} = \delta v_{i, j}^n + K_v \left( \delta v_{i+1, j}^n + \delta v_{i-1, j}^n + \delta v_{i, j+1}^n + \delta v_{i, j-1}^n - 4 \delta v_{i, j}^n \right) + \Delta t g_u \delta u_{i, j}^n + \Delta t g_v \delta v_{i, j}^n }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\delta u^n \choose \delta v^n} = \xi ^n e^{i(k_x i \Delta x + k_y j \Delta y)} {\delta u_0 \choose \delta v_0} }
Para que o método seja estável, é preciso que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\xi| < 1} . Após inserir as soluções nas equações linearizadas e realizar manipulações algébricas, como feito por Scholz[7], obtemos
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi_\pm = \frac{1}{2} \left [ \beta \pm \sqrt{\beta ^2 - 4 (\Delta t)^2 a^2 b} \right ] }
onde
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = 2 - 4 \gamma (K_u + K_v) + \Delta t (b - 1 - a^2)}
e
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = sin^2\left( \frac{k_x \Delta s}{2} \right) + sin^2\left( \frac{k_y \Delta s}{2} \right)}
Os valores Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta t = 0.01} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta s = 1} satisfazem a condição de estabilidade, como mostrado em Scholz[7].
Implementação
A seguir, o trecho do código relativo à implementação do método na linguagem Python. O código completo encontra-se no Github [1]
# u_n, v_n -> concentracao dos reagentes no tempo n (matriz Nx x Ny)
# u_n1, v_n1 -> concentracao dos reagentes no tempo n+1
while t < t_max:
for i in range(Nx):
i_e = (i - 1) % Nx # vizinho a esquerda de 0 é o da ultima posicao
i_d = (i + 1) % Nx # vizinho a direita da ultima posicao é o zero
for j in range(Ny):
j_e = (j - 1) % Ny
j_d = (j + 1) % Ny
# calcular u e v no tempo n+1
u_n1[i, j] = u_n[i, j] + dt * f(u_n[i, j], v_n[i, j], b) \
+ ku * (u_n[i_e, j] + u_n[i_d, j] + u_n[i, j_e] + u_n[i, j_d] - 4 * u_n[i, j])
v_n1[i, j] = v_n[i, j] + dt * g(u_n[i, j], v_n[i, j], b) \
+ kv * (v_n[i_e, j] + v_n[i_d, j] + v_n[i, j_e] + v_n[i, j_d] - 4 * v_n[i, j])
# atualizar u_n e v_n
for i in range(Nx):
for j in range(Ny):
u_n[i, j] = u_n1[i, j]
v_n[i, j] = v_n1[i, j]
t += dt
Resultados
Esta seção se dedica ao resultados das simulações realizadas, que mostram o caráter oscilatório do Brusselator ao longo do tempo e também como se dá a difusão dos reagentes em um recipiente em duas dimensões. As constantes utilizadas foram identificadas abaixo para plotar os gráficos, exceto quando indicado o contrário.
| Tabela de Constantes e Valores | |||||
|---|---|---|---|---|---|
| Símbolo | Nome | Valor | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_x} | Dimensão analisada ao longo do eixo x | 50 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_y} | Dimensão analisada ao longo do eixo y | 50 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} | Constante relativa à concentração do reagente A | 1 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} | Constante relativa à concentração do reagente B | 1.7 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_u} | Constante de difusão do reagente U | 0.5 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_v} | Constante de difusão do reagente V | 1 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0} | Concentração de u no tempo inicial (t=0) | 1 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} | Concentração de v no tempo inicial (t=0) | 1 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt} | Passo de tempo entre iterações | 0.01 | |||
| Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle ds} | Unidade de avanço dos eixos no espaço | 1 | |||
As posições das condições iniciais foram escolhidas arbitrariamente, tendo um total de 6 modos que serão explicados na sequência, sendo eles:
- Condição em formato do sinal "+".
- Condição de borda.
- Condição aleatória.
- Condição de nove pontos centrais.
- Condição da borda completa.
Simulação
Nas figuras abaixo temos a variação das concentrações dos reagentes ao longo do tempo e os diagramas de fase. Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 1} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 1.7} notamos que a solução do sistema converge para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(t) = 1} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v(t) = 1.7} . Esse resultado está de acordo com o esperado, pois o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(1, 1.7\right)} é um ponto fixo atrator (satisfaz que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-b+a^2 > 0} ), conforme discutido na seção de análise de estabilidade do Brusselator. Notamos também, pelo diagrama de fase, que mesmo alterando as condições iniciais do problema, a solução converge para o estado estacionário.
Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 1}
e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 3}
, temos que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1-b+a^2 < 0}
, portanto a solução do sistema não converge. O que observamos é um comportamento periódico causado pela existência do ciclo limite.
Podemos pensar nas funções de concentração Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} como ondas que sofrem interferência destrutiva, pois estão fora de fase. A animação abaixo mostra este comportamento, observe o reagente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} , representado pela cor amarela, no gráfico da direita. Note que quando o ponto do gráfico da esquerda chega ao mínimo local, o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} é alto e o de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} muito baixo, fazendo com que o gráfico da direita fique muito amarelo.
É interessante pensar no gráfico da esquerda como a análise em um ponto específico dentro do recipiente, por exemplo, se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Nx=Ny=50}
estamos analisando o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (10,10)}
. Tendo isso em mente conseguimos analisar os outros 3 cantos da figura, já que, por simetria da posição inicial escolhida, os cantos são iguais.
Condições Iniciais
Realizamos as simulações variando espacialmente as condições iniciais, para verificar os diferentes padrões formados pelo sistema.
Condição em Formato do Sinal "+"
O reagente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0} é distribuído no centro formando um sinal de "+".
# u_n [Nx, Ny]
# Centro
u_n[int(Nx / 2), int(Ny / 2)] = u0
# Lateral do sinal
# X Y
u_n[int(Nx / 2) + 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) - 1, int(Ny / 2)] = u0
# Altura do sinal
# X Y
u_n[int(Nx / 2), int(Ny / 2) + 1] = u0
u_n[int(Nx / 2), int(Ny / 2) - 1] = u0
Condição de borda
O reagente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} foi distribuído nos 4 cantos do recipiente.
# u_n [Nx, Ny]
# Sup Esq
v_n[0, 0] = v0
# Sup Dir
v_n[0, Nx - 1] = v0
# Inf Esq
v_n[Nx - 1, 0] = v0
# Inf Dir
v_n[Nx - 1, Nx - 1] = v0
Condição aleatória
Os reagentes são aleatoriamente distribuídos ao longo do recipiente, a quantidade de focos de reagente também é aleatória para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} .
from random import *
# u_n [Nx, Ny]
aleatorio = randint(int(Nx / 5)
# Aleatório para u
for _ in range(aleatorio, Nx)):
u_n[randint(0, size), randint(0, size)] = u0
# Aleatório para v
for _ in range(aleatorio, Nx)):
v_n[randint(0, size), randint(0, size)] = v0
Condição de nove pontos centrais
No centro divide 9 pontos igualmente espaçados de tamanho Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_x/4} , para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0} . Foi utilizado para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_0} na figura 3.
# Nove pontos centrais (u0)
mid = int(Nx / 2); mov = int(Nx / 4)
# Meio & direita
u_n[mid, mid] = u0
u_n[mid + mov, mid + mov] = u0
# Meio & esquerda
u_n[mid + mov, mid] = u0
u_n[mid, mid + mov] = u0
# Meio, p/baixo & p/lados
u_n[mid + mov, mid - mov] = u0
u_n[mid - mov, mid - mov] = u0
# Meio, p/cima & p/lados
u_n[mid - mov, mid] = u0
u_n[mid, mid - mov] = u0
u_n[mid - mov, mid + mov] = u0
Condição da borda completa
Completa toda a borda do recipiente com reagente Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} . Foi utilizado para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_0} na figura 3.
# v_n = [Nx, Ny]
# Toda a borda (v0)
for i in range(Nx):
# Completa primeira coluna e primeira linha
v_n[0, i] = v0
v_n[i, 0] = v0
# Completa última coluna e última linha
v_n[Nx - 1, i] = v0
v_n[i, Nx - 1] = v0
Referências
- ↑ J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973) 3919
- ↑ Turing A. M., The chemical basis of morphogenesis. 1953. Bull. Math. Biol. 52, 153, discussion 119 (1990).
- ↑ I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)
- ↑ R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971)
- ↑ G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)
- ↑ 6,0 6,1 Twizell, E. H., Gumel, A. B., & Cao, Q. (1999). Journal of Mathematical Chemistry, 26(4), 297–316
- ↑ 7,0 7,1 Scholz, Christian, Morphology of Experimental and Simulated Turing Patterns, 2009, p. 27-29.
