Equação de Fokker-Planck

De Física Computacional
Revisão de 20h19min de 1 de março de 2022 por Samuelhd (discussão | contribs) (Criou página com ''''Grupo: Álison Soares, Rodrigo Avancini Lara e Samuel Huff Dieterich''' A equação de Fokker-Planck foi aplicada em primeiro modo em problemas relacionados ao movimento B...')
(dif) ← Edição anterior | Revisão atual (dif) | Versão posterior → (dif)
Ir para navegação Ir para pesquisar

Grupo: Álison Soares, Rodrigo Avancini Lara e Samuel Huff Dieterich

A equação de Fokker-Planck foi aplicada em primeiro modo em problemas relacionados ao movimento Browniano, como veremos à seguir. Nesse caso, lidando com flutuações originadas de vários pequenos distúrbios, as partículas de interesse se chocavam com as moléculas do meio, provocando uma trajetória imprevisível. Por conta dessas flutuações, é impossível determinar a posição exata dessas partículas. Porém, é possível determinar a probabilidade de encontrá-las em determinada região.

Esta equação pode ser obtida a partir da equação de Langevin e fornece a probabilidade de encontrar determinada partícula em uma posição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} em certo instante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} . Além disso, no presente trabalho temos como objetivo estudar as soluções analítica e numérica da equação para um dado exemplo, através do método FTCS explícito.

Introdução

Movimento browniano

O movimento browniano foi descoberto pelo botanista Robert Brown, em 1827. Durante seu estudo sobre vida microscópica, ele percebeu pequenas partículas de pólen de plantas se movendo de maneira aleatória no líquido que ele estava estudando e, notando que se tratava de partículas de sujeira, e não seres vivos, chegou a conclusão que era um fenômeno físico, e não biológico, que causava este movimento. [1]

Posteriormente, foi provado que este fenômeno se dava pelos efeitos do movimento molecular. Em um meio com uma temperatura qualquer Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle >0K } , há vibração e movimento molecular. Embora haja conservacão de energia, quando a partícula interage com as moléculas do meio, a energia cinética desta partícula se altera (assim como a das moléculas). Contudo, a soma destas energias é a energia interna do fluido, como descreve o Teorema da Equiparação. [2]

Em 1905, Albert Einstein propôs uma teoria para descrever tal movimento matematicamente. Primeiramente, ele se propôs a descrever o quão longe uma partícula browniana se desloca em um determinado intervalo de tempo. Como a partícula está sujeita a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 10^{14}} colisões por segundo (provindas das moléculas do meio), a mecânica clássica é incapaz de resolver este sistema [1][3]. Para resolver este problema, ele abordou o problema pela ótica da mecânica estatística.

Inicialmente, ele considerou o incremento da posição da partícula num espaço unidimensional (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} ), num determinado intervalo de tempo (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} ). Considerando que existe uma probabilidade aleatória da partícula se mover dentro do intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} , ele definiu uma função para a densidade de probabilidade (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi(\Delta x)} ). Sabendo que o número de partículas é constante dentro do meio, ele expandiu a densidade (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} ) deste em uma série de Taylor:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(x,t) + \tau \left(\frac{\partial \rho(x,t)}{\partial t}\right) + \dots = \rho(x, t+\tau) <br> =\int_{-\infty}^{+\infty} \rho(x+\Delta x, t) \cdot \varphi(\Delta x) d\Delta x }

que é, por definição, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi} . Continuando,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\rho(x,t) \cdot \int_{-\infty}^{+\infty} \varphi(\Delta x) d\Delta x + \frac{\partial \rho}{\partial x} \cdot \int_{-\infty}^{+\infty} \Delta x \cdot \varphi(\Delta x) d \Delta x + \frac{\partial^2\rho}{\partial x^2} \int_{-\infty}^{+\infty} \frac{\Delta x}{2} \cdot \varphi(\Delta x) d\Delta x + \dots. }

Pela definição da probabilidade,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-\infty}^{+\infty} \varphi(\Delta x) d\Delta x=1 }

e as integrais dos termos pares da série são nulos devido à simetria do espaço.

Temos então,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(x, t+\tau)=\rho(x,t) \cdot 1 + 0 + \frac{\partial^2 \rho}{\partial x^2} \int_{-\infty}^{+\infty} \frac{\Delta x}{2} \cdot \varphi(\Delta x) d\Delta x + \dots <br> = \rho(x,t) + \frac{\partial^2 \rho}{\partial x^2} \int_{-\infty}^{+\infty} \frac{\Delta x}{2} \cdot \varphi(\Delta x) d\Delta x + \dots. }

Esta equação nos leva à igualdade

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho}{\partial t} = \frac{\partial^2\rho}{\partial x^2} \cdot \int_{-\infty}^{+\infty} \frac{\Delta x}{2} \cdot \varphi(\Delta x) d\Delta x + \mathcal{O}. }

Podemos interpretar a integral como o coeficiente de difusão Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = \int_{-\infty}^{+\infty} \frac{\Delta x}{2} \cdot \varphi(\Delta x) d\Delta x. }

O que nos dá a equação da difusão

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho}{\partial t} = D \frac{\partial^2\rho}{\partial x^2} }

Equação de Langevin

Em 1908, 3 anos após os estudos de Albert Einstein em processos aleatórios e movimento aleatório, Paul Langevin (1872-1946) apresentou um novo método para o movimento browniano que - segundo Langevin - era "infinitamente mais simples" que a solução proposta por Einstein. [4][5] Para interpretar o movimento browniano, Einstein derivou e resolveu uma equação diferencial parcial descrevendo a evolução temporal da densidade de probabilidade para a partícula. Já Langevin aplicou a segunda lei de Newton na forma diferencial para essa partícula.

Para uma partícula browniana de massa Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} em um líquido com viscosidade Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta} , existem duas forças que agem sobre o seu movimento[5]:

1. Arrasto pela viscosidade. 2. Força de flutuação.

Considerando que a partícula é relativamente grande em comparação com as distâncias médias entre as moléculas do líquido e esta se movimento nesse meio com velocidade Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , experimenta uma resistência pela viscosidade. Essa força é descrita pela Lei de Stokes que, para uma partícula esférica com diâmetro Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , corresponde a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6\pi\eta a \ dx/dt} .

A segunda força foi proposta por Langevin para descrever o efeito de constantes impactos das moléculas do líquido sobre as partículas de estudo. Assim, como essa força possui uma origem aleatório, esta deveria ser positiva ou negativa de maneira equiprovável e cuja magnitude fosse suficiente para manter a agitação da partícula. Caso contrário, a viscosidade iria parar o movimento dessa partícula.

Com isso, a equação que descreve o movimento a partir da posição da partícula - em 1D na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} - é dado pela Lei de Newton como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\frac{d^2x}{dt^2} = -\gamma \frac{dx}{dt} + R(t) } onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} é a massa da partícula, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma>0} é o coeficiente de fricção devido a viscosidade do líquido e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} é postulado a força de Langevin representando as flutuações de pressão devido ao movimento térmico das moléculas que compõem o líquido. [6]

Essa equação é conhecida como a equação de Langevin e foi o primeiro exemplo de equação diferencial estocástica, isto é, uma equação diferencial com um termo, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(t)} nesse caso, cuja solução em algum sentido também é uma função aleatória [5]:. Essa função foi desenvolvida para possuir as seguintes propriedades:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle R(t) \rangle = 0 <br> \langle R(t) R(t') \rangle = D \cdot \delta(t-t') } onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle f \rangle} descreve o valor médio ou esperado de uma função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} é o coeficiente de difusão e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} é a função delta.

A primeira propriedade afirma que o movimento é aleatório de forma que não existe nenhuma tendência de sentido para a partícula se locomover. Assim, é dito que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(t)} se trata de um ruído branco gaussiano. Já a segunda propriedade mostra que a força em um dado tempo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} é descorrelacionada de uma força para qualquer outro tempo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t'} (propriedade de Markov). [7]

Referências

  1. 1,0 1,1 The Brownian Movement, The Feynman Lectures on Physics. URL: https://www.feynmanlectures.caltech.edu/I_41.html.
  2. The Equipartition Theorem, University of Oxford. URL: http://vallance.chem.ox.ac.uk/pdfs/Equipartition.pdf.
  3. Stachel, J., et al.; The Collected Papers of Albert Einstein, 1989, Princeton University Press. URL: http://users.physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf.
  4. P. Langevin, "Sur la théorie de mouvement Brownien" C.R. Acad. Sci. Paris , 146 (1908) pp. 530–533, https://www.physik.uni-augsburg.de/theo1/hanggi/History/Langevin1908.pdf.
  5. 5,0 5,1 5,2 Gardiner, C.W. (1985). Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition. Springer series in synergetics.
  6. Langevin equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Langevin_equation&oldid=47575.
  7. Wikipédia: Langevin equation. URL: https://en.wikipedia.org/wiki/Langevin_equation.