Introdução
Descrição do Modelo
O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como
Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre.
O comportamento geral do sistema pode ser descrito pelas equações abaixo:
A primeira das equações acima pode ser interpretada da seguinte forma. Em um dado ponto, a variação na concentração aumenta proporcionalmente ao laplaciano de naquele ponto, i.e., quando a concentração na vizinhança desse ponto é alta; e proporcionalmente à taxa de reposição de (taxa de alimentação, ou feed rate). A concentração diminui com o termo reativo , que representa a reação .
De outro lado, na segunda das equações acima, a concentração aumenta com o termo reativo e também proporcionalmente ao laplaciano de naquele ponto, mas diminui com a remoção de a uma taxa , mais rápida, portanto, do que a reposição de .
e são os parâmetros do modelo, juntamente com os coeficientes de difusão e .
O sistema pode ser imaginado como consistindo em duas substâncias e , envoltas por uma membrana semipermeável e imersas em um meio em que essas mesmas duas substâncias estão presentes. A membrana permite a entrada da substância , mas não da substância , e permite a saída da substância , mas não da substância .[1]
Análise de estabilidade
Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.
Soluções estacionárias sem difusão
O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:
Somando essas duas equações, relacionamos as variáveis e :
onde definiu-se o parâmetro auxiliar .
Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:
Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir (4) por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :
Disso, pela relação (3), temos que os valores correspondentes para são:
É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:
- , para que existam as soluções não-triviais.
Nesse caso, então, há três soluções estacionárias do sistema:[2]
Estabilidade dos estados estacionários (sem difusão)
Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, . Explicitamente, analisando o sistema (1) de equações, temos que e . A matriz Jacobiana do sistema é então dada por:
Analisemos a estabilidade para os três pares de soluções estacionárias:
- Para :
- Por essa ser uma matriz diagonal, os autovalores são justamente as entradas das diagonais; ou seja, e . Uma vez que e são parâmetros positivos, os dois autovalores são reais e negativos, e portanto o ponto é sempre estável.
- Para , podemos utilizar uma estratégia que simplifica as contas. Em particular, nota-se que os dois pontos obedecem à segunda equação do sistema (2) com . Desse modo, se dividirmos tal equação por , percebemos que ambos os pontos obedecem a:
- Dessa equação, podemos calcular as entradas da segunda coluna da matriz jacobiana com facilidade:
- Assim, a matriz jacobiana desses pontos fica:
- Sabemos que o produto dos autovalores dessa matriz é igual ao seu determinante. Calculando-o, obtém-se:
- Dividindo por :[2]
- onde se definiu (observação: este é o definido no Gros[2]). Nota-se que a condição de existência para os dois pontos não-triviais é equivalente a . Expandindo os termos, é possível mostrar que a expressão acima pode ser reescrita como:
- Para o caso (sinal negativo em (11)), temos a cota superior . Portanto, para todo que satisfaça a condição de existência. Como o determinante é negativo, sabemos que os autovalores são reais (comentário: como as entradas da matriz são reais, se os autovalores fossem complexos, seriam também conjugados, de modo que o produto deles fosse igual ao módulo ao quadrado de qualquer um, que seria um valor positivo). Ademais, como seu produto é negativo, eles têm sinais opostos; isto é, um deles é positivo, de modo que o ponto nunca seja estável. Depreendemos desse raciocínio que o determinante da matriz jacobiana de entradas reais ser positivo é uma condição necessária para que haja estabilidade do ponto.
- Já para (sinal positivo em (11)), temos sempre que . Para verificar a estabilidade, temos que agora calcular o traço da matriz jacobiana, pois o traço é a soma dos autovalores: se os autovalores são reais, eles têm o mesmo sinal por seu determinante ser positivo, de modo que o traço compartilhe o sinal com os dois autovalores; se os autovalores são complexos, eles serão conjugados e o traço será , de modo que a parte real dos autovalores tenha o mesmo sinal do traço. Assim, basta que o traço seja negativo para que o ponto seja estável, e que seja positivo para que seja instável.
- No caso, temos que . Esse traço é negativo quando e positivo quando ; ou seja, é estável quando e instável quando (lembrando que para todo e ). Desse modo, pode-se caracterizar uma transição de estabilidade quando .
- Utilizando simultaneamente as equações (3) e (8), obtemos:[2]
- Substituindo , obteremos ao final:
Estabilidade dos estados estacionários (com difusão)
Precisamos agora analisar a estabilidade dos pontos estacionários na presença de difusão, como prescreve o sistema de equações (1), que descreve o modelo. Para isso, é necessário levar em consideração, para cada um dos estados de equilíbrio, os autovalores da matriz , em que é a matriz diagonal cujas entradas são e :[3]
Se escrevermos, genericamente, que , teremos a seguinte matriz jacobiana de reação-difusão:
Como já detalhado acima, para que o ponto seja estável, tal matriz tem que ter a parte real de todos os seus autovalores negativa, de modo que seu determinante seja positivo () e seu traço negativo ().[4] Impondo tais condições à matriz acima, obteremos, após manipulações:[3]
Se o traço é negativo, vemos que a segunda equação é imediatamente satisfeita, pois o lado esquerdo é positivo em qualquer situação.[3]
- Para o ponto , utilizamos a matriz (7), obtendo as seguintes desigualdades:
- Que são, evidentemente, satisfeitas, por análise simples de sinais de cada lado. Portanto, conclui-se que o ponto é sempre estável, inclusive na presença de difusão.
- Esse é um resultado, à primeira vista, surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing).[5] Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não-triviais neste modelo ocorre mesmo quando apenas o estado de equilíbrio trivial existir.[6]
Implementação
Será usado o método FTCS (Foward Time Central Space) para integrar as equações do modelo. Como existem explicações do método em toda literatura e em outras entradas da Wiki (ver, por exemplo, Modelo de Turing), a explicação aqui será sucinta.
O método consiste em discretizar a derivada parcial em relação ao tempo para frente e discretizar as derivadas parciais de segunda ordem em relação ao espaço centralmente. Para uma função :
A partir das duas últimas equações acima é fácil mostrar que o laplaciano em duas dimensões, como será usado no presente trabalho, pode ser escrito como
Fazendo , pode-se simplificar a discretização do laplaciano para
Usando a notação é possível então escrever as equações do modelo de forma discretizada:
Utilizou-se uma rede quadrada de tamanho . O estado do inicial do sistema é aquele em que todos os pontos estão no estado de equilíbrio estável trivial , exceto o ponto central, em que é introduzida uma perturbação com . Foram usadas condições de fronteira conforme a Figura 1.
Figura 1 - Grid para exemplificar as condições de fronteira usadas na simulação.
Cada elemento na matriz tem quatro vizinhos que são denominados por U (Up), D (Down), L (Left), R (Right). Na Figura 1, o elemento , possui os vizinhos , ; o elemento possui como vizinhos , e ; o elemento tem vizinhos , e ; e, finalmente, os vizinhos de são , , e .
Essas condições de fronteira e a condição inicial explicada acima buscam reproduzir as mesmas condições usadas na simulação de Sayama.[7]
Resultados e discussão
As simulações abaixo reproduzem duas condições simuladas por Sayama.[7]
Simulações do Modelo de Gray-Scott para a concentração , com Falhou ao verificar gramática (erro de sintaxe): {\displaystyle (D_u, D_v) = (2\times10^{-5}, 10^{-5}). A concentração é maior nas áreas mais claras.}
|
Concentração de para , de t=0 até t=2000.
|
Concentração de para , de t=0 até t=2000.
|
Em geral, todas as simulações apresentaram boa concordância qualitativa com os padrões simulados por
Sayama,[7] entretanto, as imagens não são isomorficamente equivalentes. Seguem abaixo alguns exemplos:
Uma explicação possível para as discrepâncias observadas é o tamanho do grid e a aplicação das condições iniciais.
Programa
Simulação do Modelo de Gray-Scott
Referências
- ↑ Reaction-Diffusion by the Gray-Scott Model: Pearson's Parametrization
- ↑ 2,0 2,1 2,2 2,3 Gros, p. 113
- ↑ 3,0 3,1 3,2 Sayama, pp. 287-289
- ↑ Sayama, p. 124
- ↑ Week 13, MCB111: Mathematics in Biology (Fall 2021)
- ↑ Gros, p. 115
- ↑ 7,0 7,1 7,2 Sayama, p. 268
Bibliografia
- C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.
- H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems". Open SUNY Textbooks, Geneseo, NY, 2015.