Modelo de Gray-Scott

De Física Computacional
Revisão de 13h36min de 23 de fevereiro de 2022 por Rrbds (discussão | contribs)
Ir para navegação Ir para pesquisar

Introdução

Descrição do Modelo

O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como

Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre. Há reposição de a uma taxa (taxa de alimentação, feed rate) e remoção de a uma taxa ligeiramente mais rápida do que a reposição de .

O comportamento geral do sistema pode ser descrito pelas equações abaixo:

Análise de estabilidade

Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.

Soluções estacionárias sem difusão

O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:

Somando essas duas equações, relacionamos as variáveis e :

onde definiu-se o parâmetro auxiliar .

Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:

Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir a expressão acima por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :

Disso, pela relação , temos que os valores correspondentes para são:

É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:

, para que existam as soluções não-triviais.

Portanto, há três soluções estacionárias do sistema:[1]



Logo, é trivial que o sistema acima é satisfeito quando . Esse estado de equilíbrio é estável porque a matriz jacobiana possui traço negativo e determinante positivo[2].



Se agora incluímos os termos de difusão e , deve-se levar em consideração a matriz . Aqui, é a matriz jacobiana dos termos de reação, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} é a matriz diagonal dos termos de difusão e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega} é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência[2]. Aplicando ao modelo de Gray-Scott em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} :


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \left(\begin{array}{cc}-F-v^2&-2uv\\v^2&-F-k+2uv\end{array} \right) - \left(\begin{array}{cc}D_u&0\\0&D_v\end{array} \right) \omega^2 \right) \Bigg|_{(u^*,v^*) = (1,0)} = \left(\begin{array}{cc}-F - D_u \omega^2&0\\0&-F -k - D_v \omega^2\end{array} \right) }


Para que o estado de equilíbrio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} seja estável é necessário que o determinante da matriz acima seja positivo e o traço seja negativo. Obtém-se então


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F+D_{u}\omega^2)(F+k+D_{v}\omega^2) > 0}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2F - (D_{u}+D_{v})\omega^2 - k < 0}


Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F, k, D_{u}} , e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{v}} . Portanto, o estado de equilíbrio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).

Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)[3].

Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} está presente [1].


Estados de Equilíbrio Não Triviais

Há outros dois estados de equilíbrio que são soluções não triviais do sistema de equações (1). Desde que seja obedecida a condição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F\geq4(F+k)^2} , esses estados são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u_{+},v_{-})} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u_{-},v_{+})} , com[1]


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{\pm} = \frac{1}{2}(1 \pm \sqrt{1 - 4\gamma^2 F})}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{\mp} = \frac{1}{2\gamma^2}(1 \mp \sqrt{1 - 4\gamma^2 F})}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = \frac{F + k}{F}}

Referências

  1. 1,0 1,1 1,2 C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.
  2. 2,0 2,1 H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems". Open SUNY Textbooks, Geneseo, NY, 2015.
  3. Week 13, MCB111: Mathematics in Biology (Fall 2021)