Modelo de Gray-Scott

De Física Computacional
Revisão de 22h10min de 20 de fevereiro de 2022 por Wallec (discussão | contribs)
Ir para navegação Ir para pesquisar

Introdução

Descrição do Modelo

O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como



Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre. Há reposição de a uma taxa (taxa de alimentação, feed rate) e remoção de a uma taxa ligeiramente mais rápida do que a reposição de .

O comportamento geral do sistema pode ser descrito pelas equações abaixo:


Análise de estabilidade

Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.


Estado de Equilíbrio Trivial

O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão . É fácil mostrar que, ignorando os termos de difusão, o sistema possui estado de equilíbrio estável em para quaisquer valores dos parâmetros.

Demonstração. O sistema de equações do modelo, com e , fazendo , é dado por



Logo, é trivial que o sistema acima é satisfeito quando . Esse estado de equilíbrio é estável porque a matriz jacobiana possui traço negativo e determinante positivo[1].

Se agora incluímos os termos de difusão e , deve-se levar em consideração a matriz . Aqui, é a matriz jacobiana dos termos de reação, é a matriz diagonal dos termos de difusão e é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência[1]. Aplicando ao modelo de Gray-Scott em :



Para que o estado de equilíbrio seja estável é necessário que o determinante da matriz acima seja positivo e o traço seja negativo. Obtém-se então



Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de , e . Portanto, o estado de equilíbrio permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).

Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)[2].

Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial está presente [3].


Estados de Equilíbrio Não Triviais

Há outros dois estados de equilíbrio que são soluções não triviais do sistema de equações (1). Desde que seja obedecida a condição , esses estados são e , com[3]



Referências

  1. 1,0 1,1 H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems". Open SUNY Textbooks, Geneseo, NY, 2015.
  2. http://mcb111.org/w13/w13-lecture.html#the-gray-scott-model
  3. 3,0 3,1 C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.