Algoritmo de Wang-Landau

De Física Computacional
Revisão de 14h01min de 28 de novembro de 2021 por Williampantaleao (discussão | contribs) (Criou página com ' ==Introdução== Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada tempera...')
(dif) ← Edição anterior | Revisão atual (dif) | Versão posterior → (dif)
Ir para navegação Ir para pesquisar

Introdução

Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica a uma dada temperatura , a abordagem de Wang-Landau estima a densidade de estados diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia .

Algoritmo

No início da simulação, é desconhecido e fazemos uma estimativa inicial para ele. A abordagem mais simples é definir para todas as energias possíveis . A configuração de spin inicial para toda a rede pode ser escolhida arbitrariamente. Então, uma caminhada aleatória no espaço de energia é iniciada pela formação de estados de teste, cada um dos quais é produzido escolhendo aleatoriamente um spin e alterando aleatoriamente seu estado.

Cada vez que uma energia é visitada, a entrada correspondente em é incrementada em 1. A estimativa de é então modificada por um fator multiplicativo , e o valor atualizado realiza um passeio aleatório adicional no espaço de .

Se e são energias antes e depois de um valor de spin ser alterado, a probabilidade de transição da energia para é

A razão das probabilidades de transição de para e de a podem ser calculados como

Logo, o algoritmo de passeio aleatório satisfaz o equilíbrio detalhado:

onde é a probabilidade na energia e é a probabilidade de transição de para .

Aplicação ao Modelo de Ising 2D

Modelo de Ising

Implementação

Resultados