Queremos resolver as equações que temos para
:
Sabendo que
e
podemos escrever equações para
,
e
:
e
Substituindo as equações (1) e (2) na equação para
, obtemos:
Ao substituirmos a equação (3) nessa última equação obtida, obtemos a equação citada no desenvolvimento do Método de Leapfrog, dada por
E, por fim, dela obtemos a equação para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k}
:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{i+\frac{1}{2}}^{n+1} = k_{i+\frac{1}{2}}^n+r(s_{i+1}^{n+\frac{1}{2}}-s_{i}^{n+\frac{1}{2}}), }
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = \frac{v\Delta t}{\Delta x}}
.