Modelo Brusselator de Reação-Difusão
Grupo: Carolina Lenzi, Eric Naiber e Vitória Xavier
O objetivo deste trabalho é implementar o modelo de reação-difusão Brusselator em duas dimensões, frequentemente utilizado para estudar sistemas complexos químicos e biológicos. O modelo é um sistema não linear de equações diferenciais parciais e foi proposto em 1970 por Ilya Prigogine e seus colaboradores da Universidade Livre de Bruxelas. Desde então tem sido aplicado para analisar reações oscilatórias e autocatalíticas. O método computacional utilizado para implementar o modelo foi o método FTCS (Forward Time Centered Space).
Modelo de Brusselator
O estudo de sistemas químicos e biológicos frequentemente requer o uso de modelos que caracterizam reações de reação-difusão. Um dos modelos mais utilizados é o modelo de Brusselator, que é utilizado para descrever o mecanismo químico de reação-difusão com oscilações não lineares. [J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973) 3919.] Turing [ref?] observou que quando determinadas reações são associadas a difusão, é possível obter um padrão espacial estável, e isso leva a teoria de morfogênese. Além de processos de reação-difusão, o modelo Brusselator é observado em reações enzimáticas e na física de plasma e de lasers.
O mecanismo de Brusselator proposto por Prigogine (1970) é dado por [I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)]:
- (1.a)
- (1. b)
- (1.c)
- (1.d)
Onde U e V são as espécies químicas de interesse. Assumimos A e B em excesso para que o sistema não atinja o equilíbrio. Esse sistema químico foi importante para o avanço na área de sistemas complexos porque possibilita o uso de modelos matemáticos de duas dimensões, já que U e V são variáveis dependentes, e admite “limit-cycle oscilations”. [ R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971) 267.].
As equações diferenciais parciais associadas com o sistema Brusselator são dadas por(G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)):
onde e são as concentrações a serem investigadas em função de tempo e espaço, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} e são constantes relativas às concentrações dos reagentes A e B, e e constantes de difusão.
A solução analítica do sistema reação-difusão Brusselator ainda não é conhecida e por isso há o interesse de explorá-la numericamente.
Análise da estabilidade do sistema
Análise de ponto crítico
Considerando o sistema livre de difusão, quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \partial x=\partial y=0} :
Onde e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = v(t)}
e e são constantes positivas e reais. A matriz jacobiana no ponto crítico é dada por
Os autovalores de são os valores que satisfazem a equação caracterísitca
Os autovalores claramente mostram dependência em e no determinante . Esses autovalores governam a estabilidade do ponto crítico ou determinam a existência de um ciclo limite. As propriedades de estabilidade ou a existência de um ciclo limite estão sumarizadas na tabela abaixo, em relação a figura 1.
[[Arquivo:]]
Utilizando a teoria Hopf, é mostrado que o ponto crítico perde sua estabilidade quando A e B movem da região 2 para região 3, na figura 1, atravessando a curva . Uma bifurcação Hopf ocorre quando ao passo que essa curva é atravessada e um ciclo limite estável existe para A e B nas regiões 1 e 2, mas não para A e B nas regiões 3 e 4.
Conclui-se que a curva governa a estabilidade do sistema.
Análise de ponto fixo
O estado estacionário do sistema pode ser encontrado igualando o coeficiente de difusão, e portanto as derivadas parciais, a zero. Percebe-se que esse sistema converge para os pontos fixos:
Em [twizell] a manipulação da matriz jacobiana nos pontos fixos resulta nos seguintes autovalores
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_2 = \frac{1 - \frac{1}{2} \ell (1-b+a^2) - \frac{1}{4}\ell^2a^2}{1+ \frac{1}{2} \ell (1-b+a^2) + \frac{1}{4}\ell^2a^2} }
Onde fica claro que os denominadores dos autovalores são sempre positivos quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 - b + a^2 > 0} and . As inequações
- e
São verdadeiras sempre que . Portanto, uma condição suficiente para o ponto fixo atrair a sequência gerada pelo sistema é .
Ainda em [Twizell] o modelo reação-difusão Brusselator foi discretizado e a análise dos pontos fixos concluiu que o sistema converge para e , sendo esse o único estado estacionário do sistema.
Concluiu que também que o sistema apresenta estado oscilatório quando
Estado em que o sistema não converge para nenhum ponto.
Método FTCS
O FTCS (Forward Time Centered Space) é um método de diferença finita que utiliza a derivada à direita ("para frente") no tempo e a derivada segunda centralizada no espaço para discretizar as variáveis. As derivadas no tempo e no espaço bidimensional ficam:
Substituindo nas equações do Brusselator
onde e são as funções que representam a reação sem difusão.
Utilizamos discretização do tipo
Utilizando a notação , assumindo e rearranjando os termos, reescrevemos as equações como
onde e .
Análise de estabilidade do método
Implementação
O método foi implementado em Python, considerando , variando as constantes e e as condições iniciais do problema.
import numpy as np
import matplotlib.pyplot as plt
import imageio
from random import randint
# Constantes
Nx = Ny = 50
Largura = 1
# Valores iniciais | Padrão de teste: U0 = 2 & V0 = 1 -> Pisca
# U0 = V0 = 1 -> Fica variando as piscadas entre horizontal e vertical
u0 = 1
v0 = 2
t = 0
t_max = 1500
dt = 0.1
ds = 1
# a = 1, b = 3
a = 1
b = 1.7
# Constantes dos reagentes e da estabilidade
Du = 0.1
Dv = 1
ku = Du * dt / (ds ** 2)
kv = Dv * dt / (ds ** 2)
# Constantes para gerar o Gif
gif_passo_total = 0.5 # Intervalo de tempo entre imagens
gif_passo_inicial = 0 # Inicializador
figura = 1 # Nome das figuras
fig_names = [] # Armazenando nome das figuras
fig_atual = 0 # Figura atual
fig_total = t_max / dt # Quantia de figuras
size = Nx - 1 # Tamanho do range
plot_start = 1000 # Começa a plotar a partir deste tempo
# Pedaço da equação sem derivada parcial
def f(u, v):
return a - (b + 1) * u + u * u * v
# Pedaço da equação sem derivada parcial
def g(u, v):
return b * u - u * u * v
# vetores no tempo n
u_n = np.zeros((Nx, Ny))
v_n = np.zeros((Nx, Ny))
# vetores no tempo n+1
u_n1 = np.zeros((Nx, Ny))
v_n1 = np.zeros((Nx, Ny))
# Condicoes novas
"""
Esta parte você pode tirar as aspas para gerar uma condição inicial desejada, se quiser pode ativar todas.
A mais interessante na minha opinião é a condição em uma posição aleatória.
"""
# Condição em formato de cruz (U0)
"""
for i in range(Largura):
# Meio
u_n[int(Nx / 2), int(Ny / 2)] = u0
# Laterais
# X Y
u_n[int(Nx / 2) + 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) - 1, int(Ny / 2)] = u0
# Alturas
# X Y
u_n[int(Nx / 2), int(Ny / 2) + 1] = u0
u_n[int(Nx / 2), int(Ny / 2) - 1] = u0
"""
# Bordas (V0)
"""for i in range(Largura):
# Sup Esq
v_n[0, 0] = v0
# Sup Dir
v_n[0, Nx - 1] = v0
# Inf Esq
v_n[Nx - 1, 0] = v0
# Inf Dir
v_n[Nx - 1, Nx - 1] = v0"""
# Aleatório, 10 lugares
"""
for _ in range(randint(int(Nx / 5), Nx)):
u_n[randint(0, size), randint(0, size)] = u0
for _ in range(randint(int(Nx / 5), Nx)):
v_n[randint(0, size), randint(0, size)] = v0
"""
"""
meio len/2
meio + lateral = len/2 + len/4
"""
# Nove pontos centrais (u0)
mid = int(Nx / 2) # Centro
mov = int(Nx / 4) # Movendo para cima e para os lados
u_n[mid, mid] = u_n[mid + mov, mid + mov] = u_n[mid + mov, mid] = u_n[mid, mid + mov] = u_n[mid + mov, mid - mov] = u0
u_n[mid - mov, mid - mov] = u_n[mid - mov, mid] = u_n[mid, mid - mov] = u_n[mid - mov, mid + mov] = u0
# Toda a borda (v0)
for i in range(Nx):
v_n[0, i] = v0
v_n[i, 0] = v0
v_n[Nx - 1, i] = v0
v_n[i, Nx - 1] = v0
# Criando listas separadas para plotar os gráficos.
lista_pu = []
lista_pv = []
# Algumas listas são extras, não precisam realmente estar ali, estão apenas para organização.
lista_t = []
lista_u = []
lista_v = []
lista_indices = []
indice = 0
# Plot de concentração de Nx , Ny
lista_mesh_u = np.zeros((Nx, Ny))
lista_mesh_v = np.zeros((Nx, Ny))
# Calculando concentrações com FTCS
while t < t_max:
for i in range(Nx):
i_e = (i - 1) % Nx # vizinho a esquerda de 0 é o da ultima posicao
i_d = (i + 1) % Nx # vizinho a direita da ultima posicao é o zero
for j in range(Ny):
j_e = (j - 1) % Ny
j_d = (j + 1) % Ny
u_n1[i, j] = u_n[i, j] + dt * f(u_n[i, j], v_n[i, j]) \
+ ku * (u_n[i_e, j] + u_n[i_d, j] + u_n[i, j_e] + u_n[i, j_d] - 4 * u_n[i, j])
v_n1[i, j] = v_n[i, j] + dt * g(u_n[i, j], v_n[i, j]) \
+ kv * (v_n[i_e, j] + v_n[i_d, j] + v_n[i, j_e] + v_n[i, j_d] - 4 * v_n[i, j])
# Lista i, j
lista_mesh_u[i, j] = u_n1[i, j]
lista_mesh_v[i, j] = v_n1[i, j]
lista_u.append(u_n1[0][0])
lista_v.append(v_n1[0][0])
# atualizar u_n e v_n
for i in range(Nx):
for j in range(Ny):
u_n[i, j] = u_n1[i, j]
v_n[i, j] = v_n1[i, j]
# Criar o Gif, caso não queira o gif, apenas apague esta parte
if t > plot_start:
if gif_passo_inicial > gif_passo_total:
gif_passo_inicial = 0
plt.imshow(lista_mesh_u, interpolation='none')
plt.title(f'$u_0$ = {u0} | $v_0$ = {v0} | a = {a} | b = {b} | t: {round(t, 2)}s')
# Para funcionar você deve colocar onde será salvo as imagens geradas para o gif.
plt.savefig(f'C:/Users/ericn/PycharmProjects/MetCompC/Brusselator/Figuras/{figura}.png')
fig_names.append(f'C:/Users/ericn/PycharmProjects/MetCompC/Brusselator/Figuras/{figura}.png')
fig_atual = figura
print(f'{round(fig_atual / fig_total * 100, 4)}%')
# Para fazer outro plot
if gif_passo_inicial > gif_passo_total:
lista_indices.append(indice)
indice += 1
gif_passo_inicial += dt
figura += 1
t += dt
lista_t.append(t)
print(f'{round(t / t_max * 100, 3)}%')
with imageio.get_writer('BrusselatorGif.gif', mode='I') as writer:
print('Gifando')
for filename in fig_names:
image = imageio.imread(filename)
writer.append_data(image)
# Plotar UxT animado
nome_plot = []
for i in lista_indices:
plt.plot(lista_t, lista_u, color='red', label=f'$u_0$ = {u0}')
plt.plot(lista_t, lista_v, color='blue', label=f'$v_0$ = {v0}')
plt.scatter(lista_t[i], lista_u[i], color='black')
plt.xlabel('tempo')
plt.ylabel('concentração')
plt.title(f'Taxa de variação das concentrações. t = {lista_t[i]}')
plt.xticks([i for i in range(0, 51, 5)])
plt.legend()
plt.grid(True)
plt.savefig(f'C:/Users/ericn/PycharmProjects/MetCompC/Brusselator/PlotUT/{i}.png')
nome_plot.append(f'C:/Users/ericn/PycharmProjects/MetCompC/Brusselator/PlotUT/{i}.png')
plt.cla()
print(f'{round(i/lista_indices[-1]*100, 3)}%')
with imageio.get_writer('BrusselatorUTGif.gif', mode='I') as writer:
print('Gifando')
for filename in nome_plot:
image = imageio.imread(filename)
writer.append_data(image)