Pêndulos Estocásticos

De Física Computacional
Ir para navegação Ir para pesquisar

Grupo : Gustavo H. Guesser, Joshua L. Kipper, Marcos Pasa.

Pêndulo Simples

Equação de movimento

Primeiramente vamos inserir ruído em um pêndulo simples, que é constituído de uma barra de comprimento , sem massa e rígida que contém uma massa pontual em sua ponta, conforme ilustrado na figura a seguir.

Esquema de um pêndulo simples em um campo gravitacional constante.

Considerando que o pêndulo está sob o efeito da gravidade e se encontra submerso em um fluido viscoso (como o ar), tal que a força de resistência que atua na massa é , a equação de movimento é dada por:

Vamos supor que existe uma força ruidosa atuando em , tal que sua componente tangencial () pode ser modelada por um ruído branco gaussiano da seguinte forma

em que é a intensidade do ruído. é caracterizado pelas seguintes propriedades:

Adicionando essa nova força nas equações de movimento, ficamos com

A partir de agora, por questão de simplicidade, vamos supor que , então

Método de integração

Vamos montar um método para integrar o sistema no tempo. Primeiramente vamos dividir a equação em duas equações diferencias de primeira ordem, introduzindo a variável , então ficamos com o seguinte sistema

que pode ser escrito na forma diferencial

mas é o incremento do processo de Wiener (), então

Discretizando o tempo e lembrando que a densidade de probabilidade de transição de para tem desvio padrão igual a

em que é uma amostra de uma distribuição gaussiana com média 0 e variância 1, e o método de Euler foi utilizado para a parte determinística da equação.

Nas próximas seções será analisado a energia do sistema, e como o método de Euler não é muito bom para preservar a energia de sistemas conservativos, será utilizado o método preditor corretor (com adição do método de Heun para ) para a parte determinística da equação, que consiste nos seguintes passos:

  • Calcular um theta intermediário:
   
  • Com calcular um theta médio e utilizá-lo para obter um omega intermediário:
   
Em que é a expressão do método de Euler visto logo acima.
  • Recalcular theta utilizando um omega intermediário
   
  • Recalcular omega com um theta intermediário atualizado
   
OBS: No cálculo de e foi utilizado o mesmo .

Energia (Sem amortecimento)

Logo após terminar a implementação do método numérico, rapidamente notamos que a adição do ruído gera um aumento na energia mecânica do pêndulo (), vamos explorar esse fenômeno, sempre utilizando . Para ilustrar esse efeito, segue uma animação do pêndulo partindo do repouso na configuração de equilíbrio estável () com

Pêndulo partindo do repouso com ruído.

Para realizar uma exploração quantitativa, o seguinte procedimento foi feito para vários valores de :

  • Utilizando , integrar o sistema até , calculando e armazenando a energia em cada passo temporal. Repetir essa integração 700 vezes para fazer médias temporais. Como exemplo, segue os dados obtidos da energia em função do tempo (com a média temporal feita) para um determinado utilizado
Energia média em função tempo.
O gráfico nos indica que o ruído gera uma potência média sobre o pêndulo.
  • Realizar um ajuste linear nos dados para obter o coeficiente angular, que corresponde a potência média gerada pelo ruído ().

Com as simulações executadas, foi realizado o gráfico . Notamos que os dados se alinham em linha reta com os eixos em escala logarítmica, ou seja, os mesmos seguem uma lei de potência , então foi realizado outro ajuste linear para encontra o expoente , a figura a seguir ilustra os dados e os resultados do ajuste:

Potência em função do ruído (). O painel da esquerda possui eixos em escala linear e o da direita em escala logarítmica.

Portanto, aumenta, aproximadamente, de forma quadrática com . Por fim, gostaríamos de mostrar que mesmo para muito pequeno, ainda existe energia sendo injetada no sistema com taxa constante, e isso não é um artefato da simulação. Para tal, foram realizadas 700 simulações com e os resultados foram comparados com

Energia média para muito pequeno comparado com nulo.

Energia (Com amortecimento)

Até o momento, o amortecimento foi negligenciado. Vamos, então, introduzi-lo e rodar várias simulações (700, neste caso) e observar como a média temporal da energia evolui ao longo do tempo, assim como foi feita na seção anterior. Utilizando e foi obtido o seguinte resultado

Energia mecânica média em função do tempo com amortecimento.

claramente o comportamento neste caso é diferente do observado sem amortecimento, agora a anergia aumenta até um certo valor e permanece nele. Para explorar este novo fenômeno, os seguintes passos foram feitos para cada valor de :

  • Para diversos valores de , executar 700 simulações até a energia estabilizar, salvando a média da energia entre as simulações.
  • Para cada conjunto de dados gerados por um determinado , selecionar um intervalo de tempo onde a energia está estabilizada e calcular a sua média ().

Produzindo o gráfico de obtemos

Energia estabilizada média em função de para diferentes valores de amortecimento. Os painéis da esquerda possui eixos em escala linear e os da direita em escala logarítmica.

as linhas vermelhas são os melhores ajustas de leis de potência na forma . Para os dados utilizados no ajuste foram apenas até (indicado pela reta preta vertical no gráfico), pois após esse limite, a lei de potência deixa de ser um ótimo ajuste. É chamativo o fato de todos os coeficientes, independente de , serem aproximadamente 2.

Pêndulo invertido

O próximo pêndulo a ser considerado é um pêndulo invertido, que possui um potencial harmônico em seu ângulo, ou seja, um dos termos de sua energia potential é , sendo que agora é zero quando a haste está apontando para cima, conforme ilustrado na figura a seguir

Esquema do pêndulo invertido com movimento vertical livre na base.


Ainda, a base do pêndulo é livre para movimentar-se na direção vertical, é justamente nesse local onde será adicionado uma força ruidosa. A equação de movimento neste caso é

O primeiro termo vem da resistência do ar, o segundo se origina da gravidade e do deslocamento de e o último provém da "mola" em . Vamos supor que existe um vínculo mantendo a base fixa, mas o local onde o pêndulo é fixado pode se movimentar de forma aleatória na direção vertical, supondo que tal movimento pode ser modelado por ruído branco gaussiano, segue que . Introduzindo a variável , ficamos com os seguintes sistemas de equações na forma diferencial

Note que agora o ruído é multiplicativo, em contraste com o ruído aditivo dos pêndulos anteriores, para lidar com esta complicação, no momento da integração vamos utilizar um médio no argumento do seno que multiplica

Esse tipo de pêndulo é de grande interesse em algumas áreas, como na engenharia estrutural, pois uma coluna comprimida pode ser modelada como um pêndulo invertido com uma mola na base, o ruído da base pode representar um terremoto.

Uma questão interessante neste modelo é sobre a estabilidade da configuração quando é adicionado ruído e amortecimento. Se é grande o suficiente, sem ruído, o equilíbrio é estável, mas é possível sair dessa configuração adicionando ruído, cujo valor limite vai depender do amortecimento. Podemos demostrar isso integrando o sistema, partindo da condição inicial , com valores de muito próximos:

Esquema do pêndulo invertido com movimento vertical livre na base.
Esquema do pêndulo invertido com movimento vertical livre na base.

os seguintes valores foram utilzados

  • g = l = 1
  • k = 1.1

No gráfico da esquerda, o ângulo oscilou um pouco e permaneceu em 0, já no outro, eventualmente, o ângulo explodiu. Abaixo segue uma animação dessa situação, mas com para o pêndulo sair do equilíbrio mais rápido

Pêndulo invertido partindo do equilíbrio com ruído.

Pêndulo Duplo Estocástico

O pêndulo duplo estocástico é um sistema dinâmico que combina a complexidade intínseca do pêndulo duplo com a introdução de elementos de aleatoriedade ou incerteza, tornando o comportamento do sistema ainda mais imprevisível e caótico. O pêndulo duplo em si é um exemplo clássico de um sistema caótico, onde pequenas variações nas condições iniciais podem resultar em trajetórias drasticamente diferentes. Quando um termo estocástico é adicionado, por exemplo, na forma de uma força externa aleatória ou de flutuações nos parâmetros do sistema, a análise e a previsão do movimento se tornam desafiadoras.

Pêndulo Duplo não estocástico.

Equação de movimento

O pêndulo duplo consiste em dois pêndulos acoplados, onde o segundo pêndulo está suspenso na extremidade do primeiro. As equações de movimento para o pêndulo duplo sem termos estocásticos podem ser derivadas utilizando as equações de Lagrange, considerando as coordenadas angulares e como as variáveis generalizadas e são dadas por:

mantendo , , , , fixos, defina :

assim as equações dinâmicas ficam escritas de maneira mais compacta:

suponha que haja um força externa ruidosa, , onde além de dar a intensidade do ruído branco, terá consigo todas as constantes agrupadas. Assim as equações de movimento se tornam:

Método de integração

Para a integração numérica desse sistema utilizaremos o método Runge-Kutta 4. Seja o sistema de equações se torna:

na forma diferencial:

onde é o incremento do processo de Wiener. Discretizando as equações diferencias e aplicando o método RK4, obtemos:

para e .

Retrato de fase

Pêndulo duplo estocástico com ruído branco em , e .
Pêndulo duplo estocástico com ruído branco em , e .
Pêndulo duplo estocástico com ruído branco igual em e , e .
Pêndulo duplo estocástico com ruídos brancos diferentes em e , e .

Energia

Vamos analisar a como se comporta a energia mecânica do pêndulo duplo com diferentes sistemas com ruído aditivo. Nas simulações sempre utilizamos , , como unitários, além disso note que nas equações dinâmicas foram definidos dois ruídos distintos assim como duas intensidade distintas, foi feito assim pois os termos que estão sendo agrupados junto da intensidade do ruído não são iguais para as duas equações, então em geral, essas intensidades são distintas.

Caso 1 : Ruído em θ₁

Caso 2 : Ruído em θ₂

Caso 3 : Ruídos Iguais em θ₁ e θ₂

Caso 4 : Ruídos Diferentes em θ₁ e θ₂