Modelo de Levins aprimorado para 3 espécies

De Física Computacional
Revisão de 20h46min de 13 de abril de 2021 por Jhordan (discussão | contribs)
Ir para navegação Ir para pesquisar

Anterior: Modelo de Levins aprimorado para 2 espécies | Índice: Ecologia | Próximo: Modelo espacialmente explícito

Para três espécies o modelo de Levins se torna:

Guanaco

Podemos perceber que é a mesma equação para a presa no modelo de duas 2 espécies, proporcional a população atual.

O termo responsável pelo aumento na população é o que representa a colonização. Podemos pensar em termos probabilísticos, que temos 3 eventos independentes:

  • Probabilidade de selecionar um fragmento com um guanaco disponível para tentar a colonização;
  • Probabilidade selecionar um fragmento disponível para ser colonizado;
  • Probabilidade de que cada tentativa de colonização tenha sucesso.

A queda na população acontece por dois termos que representam dois eventos diferentes:

  • Extinção local: depende da taxa . Temos como dois eventos independentes a probabilidade selecionar um fragmento com guanaco e a probabilidade de que cada guanaco sofra a extinção local.
  • Predação: depende da população de predadores e a taxa de predação . Novamente podemos interpretar como três eventos independentes. Probabilidade de selecionarmos uma puma, probabilidade de selecionarmos um guanaco e probabilidade de ocorrer a predação a cada encontro. Assim como o modelo de Lotka-Volterra, a predação é proporcional a população de ambas as espécies.
Ovelha

A ovelha talvez tenha a dinâmica mais complexa do sistema, pois é tanto um competidor inferior ao gunaco, quanto uma presa para o puma, e isso interfere diretamente nos fragmentos disponíveis para a colonização. Pensando em probabilidade e conectando a probabilidade de ocorrer a colonização, é dada pela probabilidade de que cada tentativa de colonização tenha sucesso e a probabilidade de selecionarmos um fragmento disponível pra as ovelhas é . Lembrando que para o caso do guanaco, isso era apenas:

Pois probabilidade de selecionarmos um fragmento destruído é , e de selecionarmos um fragmento ocupado por guanacos é , e são eventos independentes, isto é, nunca temos um fragmento destruído com guanacos. Então a probabilidade de selecionarmos um fragmento que o guanaco não pode colonizar é dado por , uma vez que são eventos mutuamente exclusivos. Por complementaridade a probabilidade de selecionarmos um fragmento que o guanaco pode colonizar é dado por .

Agora precisamos considerar os fragmentos que estão destruídos e os ocupados por ovelhas ou guanacos. Mas a ocupação de guanacos e ovelhas não é exclusiva, isto é, temos fragmentos ocupados por guanacos e ovelhas. Então a probabilidade de selecionarmos um fragmento ocupado por guanaco ou ovelha é dado por , uma vez são eventos independentes. Sendo assim a probabilidade de selecionarmos um fragmento indisponível é dado por . E novamente recorrendo a complementaridade, a probabilidade de selecionarmos um fragmento disponível para a ovelha é dada por então por .

De resto, a população diminui de forma semelhante ao guanaco:

  • Termo de extinção local: proporcional a taxa de extinção local ;
  • Termo de predação: proporcional a população de predadores e a taxa de predação .;
  • Termo de deslocamento: ocorre devido a competição hierárquica e matematicamente é idêntico a predação, apenas substituímos e .
Puma

Começando com a parte simples do que já discutimos, a população é reduzida devido a um fator de extinção , e não temos predação, pois o puma é próprio predador.

Diagrama de Veinn representando os conjuntos envolvidos no sistema.

Agora novamente a parte complexa reside na hora de levarmos em conta a probabilidade de selecionarmos um fragmento disponível. Precisamos considerar todos os fragmentos ocupados ocupados por guanacos ou ovelhas. E quando fazemos isso, precisamos tomar cuidado para não contar duas vezes fragmentos que estejam ocupados por ambas as espécies, então temos . Além disso, também precisamos descontar os fragmentos que já estão ocupados por pumas, então precisamos descontar os que possuem guanaco e puma , ovelha e puma . Porém novamente, não podemos descontar duas vezes os fragmentos que possuem ovelha, guanaco e puma, então é necessário "devolver" . Temos então:

Como são todos eventos independentes:

E substituindo as probabilidades pelas frações:
E como , podemos reescrever como:
Ou ainda:
Denotando o espaço complementar como :
Ou seja o termo de colonização é proporcional aos fragmentos ocupados pelas ovelhas e guanacos e os fragmentos livres das pumas

Principal material utilizado

  1. Mathematical model of livestock and wildlife: Predationand competition under environmental disturbances (Fabiana Laguna e outros, Ecological Modelling)


Anterior: Modelo de Levins aprimorado para 2 espécies | Índice: Ecologia | Próximo: Modelo espacialmente explícito