Conhecer o estado de uma partícula, na Mecânica Clássica, é saber, em um determinado momento, sua velocidade e sua posição. A partir destes valores, é possível determinar os seus futuros estados utilizando as relações fornecidas pelas Leis de Newton. Na Mecânica Quântica, porém, o estado físico não é mais caracterizado por uma quantidade discreta de valores numéricos, e sim, por uma função. A chamada Função de Onda, , nos informa a evolução temporal do estado quântico de uma partícula, seguindo a Equação de Schrödinger. Em uma dimensão, a Equação de Schrödinger é dada por:
O Método De Crank-Nicolson
A fim de resolvê-la numericamente para diferentes tipos de potenciais, usou-se o Método de Crank-Nicolson de resolução de EDPs. Este método baseia-se em combinar os métodos explícito e implícito (com igual contribuição) para aumentar sua estabilidade.
O método explícito FTCS (Forward Time Central Space) consiste em tomar derivadas temporais "para frente" e manter a derivada espacial centrada.
;
Tomando (unidades atômicas), ao inserirmos as expressões acima na Equação de Schrödinger, temos que:
Simplificando a notação para , onde representa a posição e o tempo, e reorganizando os termos, ficamos com:
O método implícito é semelhante, porém a derivada temporal é "para trás".
O que nos leva a ter:
que, com uma substituição de variável (que é muda), nos dá, enfim:
Como dito, o Método de Crank-Nicolson é uma combinação dos métodos implícito e explícito, cada um tendo o mesmo peso de 1/2. Ao somarmos as duas equações (cada uma multiplicada por 0.5), ficaremos com a seguinte expressão:
que, ao reorganizarmos para isolar os , resulta em:
Para resolver a equação em simultaneamente para ambos os tempos e em todos os pontos, escrevemos a equação em forma matricial:
com
.
Podemos notar que a diferença entre as matrizes que multiplicam e é somente o sinal das componente imaginárias. Assim, a equação final pode ser escrita como:
, onde A é a matriz
Estabilidade do Método de Crank-Nicolson
Para verificar a estabilidade, devemos primeiro olhar para a equação que define o método:
Para simplificar, chamaremos de b. Nesse caso, temos:
Definimos os Modos de Fourier:
Assim, obtemos:
Dividindo tudo por :
Escrito de outra forma:
Utilizando relações trigonométricas:
Assim, obtemos o fator de amplificação:
Portanto, o método é estavel.
Exemplos de Potenciais
Oscilador Harmônico
O oscilador harmônico quântico consiste de uma partícula em uma zona onde o potencial possui comportamento harmônico, ou seja, depende de . Em nosso exemplo, inserimos um pacote de formato gaussiano no interior de um potencial harmônico e observamos sua evolução temporal.
Abaixo encontra-se o código usado em Júlia.
using Plots
# Definição de constantes
ħ = 1
xmax = 100
tmax = 150
m = 1
Δt = 0.2
Δx = 0.25
σ = 2
k = 75
ω = 0.1
x0 = xmax/2
# Definição do espaço de integração e do pacote de onda inicial
x = collect(0:Δx:xmax)
Ψ_HO = zeros(Complex{Float64}, length(x))
for (i, val) in enumerate(x)
Ψ_HO[i] = 0.5*exp(-(val - xmax/3)^2/(2*σ^2))*exp(im*k*(val-xmax/3))
end
# Potencial do oscilador harmônico
function V_HO(x)
return 0.5 * m * (ω^2) * ((x - x0)^2)
end
# Pré-cálculo do potencial do oscilador harmônico
V_HO_values = [V_HO(x_i) for x_i in x[2:end-1]]
# Matrizes de evolução temporal
A_HO = zeros(Complex{Float64}, length(x)-2, length(x)-2)
for i in 1:length(x)-2, j in 1:length(x)-2
if i == j
A_HO[i, j] = 1 + im * (Δt / (2ħ)) * (ħ^2 / (m * Δx^2) + V_HO_values[i])
elseif i == j + 1 || i == j - 1
A_HO[i, j] = -im * (ħ * Δt) / (4 * m * Δx^2)
end
end
invA_HO = inv(A_HO)
B_HO = conj(A_HO)
# Criação do GIF
anim = @animate for t in 0:Δt:tmax
Ψ_HO[2:end-1] .= invA_HO * (B_HO * Ψ_HO[2:end-1])
plot(x, abs2.(Ψ_HO), xlabel="Position", title="Time: $t", ylims=(0, 1), label="|Ψ|²")
plot!(x, V_HO.(x), label="Potential V(x)")
end
gif_path = "/gif/path/harmonic_oscilator.gif"
gif(anim, gif_path, fps=45)
Barreira (Tunelamento)
Na mecânica quântica partículas podem existir, mesmo que com baixa probabilidade, em regiões que classicamente seriam proibidas. Este é o caso da barreira, onde uma partícula atravessa uma região onde sua energia total é negativa. Chamamos este fenômeno de tunelamento. A seguir, há um exemplo onde inserimos um pacote de formato gaussiano se deslocando em direção a uma barreira de potencial, de forma que parte da onda é refletida de volta e outra tunela pela barreira.
Abaixo encontra-se o código usado em Júlia.
using Plots
# Definição de constantes
ħ = 1
xmax = 500
tmax = 200
m = 1
Δt = 0.2
Δx = 0.25
σ = 1.5
k = 50
ω = 0.1
# Definição do espaço de integração e do pacote de onda inicial
x = collect(0:Δx:xmax)
Ψ = zeros(Complex{Float64}, length(x))
for (i, val) in enumerate(x)
Ψ[i] = Ψ[i] = 0.5*exp(-(val - xmax/2.5)^2/(2*σ^2))*exp(-im*k*(val))
end
# Potencial barreira
function V(arg)
if arg > xmax*0.5 && arg <= xmax*0.51
return 0.1
else
return 0
end
end
# Pré-cálculo do potencial V
V_values = [V(x_i) for x_i in x[2:end-1]]
# Matrizes de evolução temporal A
A = zeros(Complex{Float64}, length(x)-2, length(x)-2)
for i in 1:length(x)-2, j in 1:length(x)-2
if i == j
A[i, j] = 1 + im * (Δt / (2ħ)) * (ħ^2 / (m * Δx^2) + V_values[i])
elseif i == j + 1 || i == j - 1
A[i, j] = -im * (ħ * Δt) / (4 * m * Δx^2)
end
end
invA = inv(A)
B = conj(A)
# Criação do GIF
anim = @animate for t in 0:Δt:tmax
global Ψ[2:length(x)-1] = invA * (B * Ψ[2:length(x)-1])
plot(x, abs2.(Ψ), xlabel="Position", title="Time: $t", ylims=(0, 0.1), label="|Ψ|²")
plot!(x, V.(x), label="Potential V(x)")
end every 10
gif_path = "/Users/lucas/OneDrive/Imagens/Imagens de trabalhos/tunneling.gif"
gif(anim, gif_path, fps = 30)
Poço Finito
O contrário da barreira é o chamado de poço de potencial. Ao invés da partícula atravessá-lo por completo, uma parte do pacote de onda é refletido, uma parte é transmitido e outra ainda fica preso no meio do poço. Veja o exemplo.
Abaixo encontra-se o código usado em Júlia.
using Plots
dt = 0.1
dx = 0.25
L = 50
x = collect(0:dx:L)
size(x)
function V_p(x)
if x<L/3
return 0.1
elseif x>2L/3
return 0.1
else
return 0
end
end
b = dt*im/(4*dx^2)
A_p = [if i==j; 1 - 2b - V_p(i)*dt*im/2 elseif i==dx+j || i==j-dx; b else 0 end for i=0:dx:L, j=0:dx:L]
B_p = @. conj(A_p)
IB_p = inv(B_p)
len = length(x)
ψ = [(sqrt(1/(8*pi))*exp(-(val - L/4)^2/(8))*exp(-im*75*(val-L/4))) for val in x]
for (i,num) in enumerate(ψ)
if abs(num)<1e-10;
ψ[i]=0
end
end
ves_p = @. V_p(x)
t=0
@gif for t in 0:dt:50
ψ[2:end-1] = IB_p[2:end-1,2:end-1]*A_p[2:end-1,2:end-1]*ψ[2:end-1]
for (i,num) in enumerate(ψ)
if abs(num)<1e-10;
ψ[i]=0
end
end
plot(x,abs2.(ψ),c="red",label="|ψ|^2")
#plot!([x for x=0:dx:L],imag(ψ),c="blue")
plot!([x for x=0:dx:L],ves_p,c="blue",label="V(x)")
plot!(ylim=[0,0.15],title="t=$t")
end