Modelo de Gray-Scott: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 236: Linha 236:




No geral, a simulação conseguiu reproduzir o comportamento qualitativo de todos os pontos mostrados no espaço de fases da '''Figura 3''', o que é um resultado notável para um método tão simples como o FCTS, com um grid pequeno e tempo/recurso computacional limitados.
No geral, a simulação conseguiu reproduzir o comportamento qualitativo dos pontos mostrados no espaço de fases da '''Figura 3''', o que é um resultado notável para um método tão simples como o FCTS, com um grid pequeno e tempo/recurso computacional limitados.


== Programa ==
== Programa ==

Edição das 19h12min de 27 de fevereiro de 2022

Introdução

Descrição do Modelo

O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como

Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise).[1] Além dessa reação, ambas as substâncias difundem-se pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, dessa forma, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre.

O comportamento geral do sistema pode ser descrito pelas equações diferenciais parciais abaixo:

A primeira das equações acima pode ser interpretada da seguinte forma: em um dado ponto, a variação na concentração aumenta proporcionalmente ao laplaciano de naquele ponto — ou seja, quando a concentração na vizinhança desse ponto é alta —, e proporcionalmente à taxa de reposição de (taxa de alimentação, ou feed rate); a concentração diminui com o termo reativo , que representa a reação .

Já na segunda equação, a concentração aumenta com o termo reativo e também proporcionalmente ao laplaciano de naquele ponto, mas diminui com a remoção de a uma taxa , mais rápida, portanto, do que a reposição de .

Assim, e são os parâmetros do modelo, juntamente com os coeficientes de difusão e .

Pode-se imaginar esse sistema como consistindo de duas substâncias e , envoltas por uma membrana semipermeável e imersas em um meio em que essas mesmas duas substâncias estão presentes. A membrana permite a entrada da substância , mas não da substância , e permite a saída da substância , mas não da substância .[2]

Análise de estabilidade

Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.

Soluções estacionárias sem difusão

O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:

Somando essas duas equações, relacionamos as variáveis e :

onde definiu-se o parâmetro auxiliar .

Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:

Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir (4) por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :

Disso, pela relação (3), temos que os valores correspondentes para são:

É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:

, para que existam as soluções não-triviais.

Nesse caso, então, há três soluções estacionárias do sistema:[3]

Estabilidade dos estados estacionários (sem difusão)

Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, . Explicitamente, analisando o sistema (1) de equações, temos que e . A matriz Jacobiana do sistema é então dada por:

Analisemos a estabilidade para os três pares de soluções estacionárias:

  • Para :
Por essa ser uma matriz diagonal, os autovalores são justamente as entradas das diagonais; ou seja, e . Uma vez que e são parâmetros positivos, os dois autovalores são reais e negativos, e portanto o ponto é sempre estável.
  • Para , podemos utilizar uma estratégia que simplifica as contas. Em particular, nota-se que os dois pontos obedecem à segunda equação do sistema (2) com . Desse modo, se dividirmos tal equação por , percebemos que ambos os pontos obedecem a:
Dessa equação, podemos calcular as entradas da segunda coluna da matriz jacobiana com facilidade:
Assim, a matriz jacobiana desses pontos fica:
Sabemos que o produto dos autovalores dessa matriz é igual ao seu determinante. Calculando-o, obtém-se:
Dividindo por :[3]
onde se definiu (observação: este é o definido no Gros[3]). Nota-se que a condição de existência para os dois pontos não-triviais é equivalente a . Expandindo os termos, é possível mostrar que a expressão acima pode ser reescrita como:
  • Para o caso (sinal negativo em (11)), temos a cota superior . Portanto, para todo que satisfaça a condição de existência. Como o determinante é negativo, sabemos que os autovalores são reais (comentário: como as entradas da matriz são reais, se os autovalores fossem complexos, seriam também conjugados, de modo que o produto deles fosse igual ao módulo ao quadrado de qualquer um, que seria um valor positivo). Ademais, como seu produto é negativo, eles têm sinais opostos; isto é, um deles é positivo, de modo que o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{1}, v^{*}_{1})} nunca seja estável. Depreendemos desse raciocínio que o determinante da matriz jacobiana de entradas reais ser positivo é uma condição necessária para que haja estabilidade do ponto.
  • Já para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = 2} (sinal positivo em (11)), temos sempre que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{2} > 0} . Para verificar a estabilidade, temos que agora calcular o traço da matriz jacobiana, pois o traço é a soma dos autovalores: se os autovalores são reais, eles têm o mesmo sinal por seu determinante ser positivo, de modo que o traço compartilhe o sinal com os dois autovalores; se os autovalores Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_{i}} são complexos, eles serão conjugados e o traço será Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Tr}(J_{R}) = 2 \operatorname{Re}(\lambda_{i})} , de modo que a parte real dos autovalores tenha o mesmo sinal do traço. Assim, basta que o traço seja negativo para que o ponto seja estável, e que seja positivo para que seja instável.
No caso, temos que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Tr}(J_{R}(u^{*}_{2},v^{*}_{2})) = k - (v^{*}_{2})^2} . Esse traço é negativo quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v^{*}_{2})^2 > k} e positivo quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (v^{*}_{2})^2 < k} ; ou seja, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{2}, v^{*}_{2})} é estável quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v^{*}_{2} > \sqrt{k}} e instável quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v^{*}_{2} < \sqrt{k}} (lembrando que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v^{*}_{2} > 0} para todo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} ). Desse modo, pode-se caracterizar uma transição de estabilidade quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v^{*}_{2} = \sqrt{k}} .
Utilizando simultaneamente as equações (3) e (8), obtemos:[3]
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{F+k}{v^{*}_{2}} = u^{*}_{2} = 1 - \gamma v^{*}_{2} = 1 - \frac{F+k}{F} v^{*}_{2} \Rightarrow (F+k)\frac{F+ (v^{*}_{2})^2}{F} = v^{*}_{2}}
Substituindo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v^{*}_{2} = \sqrt{k}} , obteremos ao final:[3]
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F+k)^2 = F \sqrt{k} \quad (12)}
Que é uma relação entre Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} que caracteriza a fronteira de estabilidade para o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{2},v^{*}_{2})} .

Estabilidade dos estados estacionários (com difusão)

Precisamos agora analisar a estabilidade dos pontos estacionários na presença de difusão, como prescreve o sistema de equações (1), que descreve o modelo. Para isso, é necessário levar em consideração, para cada um dos estados de equilíbrio, os autovalores da matriz Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(J_{R} - D \omega^2\right)\Bigg|_{(u^{*}_{i}, v^{*}_{i})}} , em que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} é a matriz diagonal cujas entradas são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{u}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{v}} :[4]

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = \begin{bmatrix} D_{u} & 0 \\ 0 & D_{v} \end{bmatrix}}

Se escrevermos, genericamente, que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{R}(u^{*}_{i}, v^{*}_{i}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}} , teremos a seguinte matriz jacobiana de reação-difusão:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(J_{R} - D \omega^2\right)\Bigg|_{(u^{*}_{i}, v^{*}_{i})} = \begin{bmatrix} a - D_{u}\omega^2 & b \\ c & d - D_{v}\omega^2 \end{bmatrix}}

Como já detalhado acima, para que o ponto seja estável, tal matriz tem que ter a parte real de todos os seus autovalores negativa, de modo que seu determinante seja positivo (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{det}\left(J_{R} - D \omega^2\right) > 0} ) e seu traço negativo (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{Tr}\left(J_{R} - D \omega^2\right) < 0} ).[5] Impondo tais condições à matriz acima, obteremos, após manipulações:[4]

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} a D_{v}\omega^2 + d D_{u}\omega^2 - D_{u} D_{v}\omega^4 & < \operatorname{det}(J_{R}) & \quad (13)\\ D_{u}\omega^2 + D_{v}\omega^2 & > \operatorname{Tr}(J_{R}) & \quad(14)\\ \end{align}}

Se o traço é negativo, vemos que a segunda equação é imediatamente satisfeita, pois o lado esquerdo é positivo em qualquer situação.[4] Investiguemos, agora, se os estados estacionários que eram estáveis condicional ou incondicionalmente, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{0},v^{*}_{0})} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{2},v^{*}_{2})} , permanecem estáveis após a introdução da difusão.

  • Para o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{0},v^{*}_{0})} , utilizamos a matriz (7), obtendo as seguintes desigualdades:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} -FD_{v}\omega^2 -(F+k) D_{u}\omega^2 - D_{u} D_{v}\omega^4 & < F(F+k)\\ D_{u}\omega^2 + D_{v}\omega^2 & > -2F-k \\ \end{align}}
Que são, evidentemente, satisfeitas, por análise simples de sinais de cada lado. Portanto, conclui-se que o ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{0},v^{*}_{0})} é sempre estável, inclusive na presença de difusão.
Esse é um resultado, à primeira vista, surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing).[6] Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não-triviais neste modelo ocorre mesmo quando apenas o estado de equilíbrio trivial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}_{0}, v^{*}_{0}) = (1, 0)} existir.[7]

Implementação numérica

O método usado para integrar as equações diferenciais parciais do modelo foi o FTCS (Foward Time Central Space). Como existem explicações do método em toda literatura e em outras entradas da Wiki (ver, por exemplo, Modelo de Turing), a explicação aqui será sucinta.

O método consiste em discretizar a derivada parcial em relação ao tempo para frente e discretizar as derivadas parciais de segunda ordem em relação ao espaço centralmente (isto é, levando em consideração os pontos adjacentes ao ponto em que ela é calculada). Para uma função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y,t)} :


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial f}{\partial t} \approx \frac{f(x, y, t + \Delta t) - f(x, y, t)}{\Delta t}}


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 f}{\partial x^2} \approx \frac{f(x + \Delta x, y, t) - 2f(x, y, t) + f(x - \Delta x, y, t)}{\Delta x^2}}


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 f}{\partial y^2} \approx \frac{f(x, y + \Delta y,t) - 2f(x,y,t) + f(x, y - \Delta y,t)}{\Delta y^2}}


Das duas últimas equações acima, é fácil mostrar que o laplaciano em duas dimensões, presente nas equações do sistema (1) deste trabalho, pode ser escrito como

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2 f(x,y,t) \approx \frac{f(x + \Delta x, y, t) - 2f(x, y, t) + f(x - \Delta x, y, t)}{\Delta x^2} + \frac{f(x, y + \Delta y, t) - 2f(x, y, t) + f(x, y - \Delta y, t)}{\Delta y^2}}


Utilizando passos de mesmo tamanho nas direções Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} , ou seja, fazendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x = \Delta y = \Delta h} , pode-se simplificar a discretização do laplaciano para

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2 f(x,y,t) \approx \frac{1}{\Delta h^2} \left[f(x + \Delta h, y, t) + f(x - \Delta h, y, t) + f(x, y + \Delta h,t) + f(x, y - \Delta h,t) - 4f(x, y, t) \right]}

Usando a notação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x_{i}, y_{j}, t_{n}) \equiv f^{n}_{i, j}} e definindo as separações de pontos como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_{n+1} = t_{n} + \Delta t} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1} = x_{i} + \Delta h} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{j+1} = y_{j} + \Delta h} , fica possível então escrever as equações do modelo de forma discretizada:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} u_{i,j}^{n+1} = u_{i,j}^{n} & + \left[ -u_{i,j}^{n}(v_{i,j}^{n})^{2} + F(1-u_{i,j}^{n}) + D_u\frac{u_{i+1,j}^{n} + u_{i-1,j}^{n} + u_{i,j+1}^{n} + u_{i,j-1}^{n} - 4u_{i,j}^{n}}{\Delta h^2}\right]\Delta t\\ v_{i,j}^{n+1} = v_{i,j}^{n} & + \left[ u_{i,j}^{n}(v_{i,j}^{n})^{2} - (F+k)v_{i,j}^{n} + D_v\frac{v_{i+1,j}^{n} + v_{i-1,j}^{n} + v_{i,j+1}^{n} + v_{i,j-1}^{n} - 4v_{i,j}^{n}}{\Delta h^2}\right]\Delta t\\ \end{align}}

Utilizou-se uma rede quadrada de tamanho Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 69 \times 69} . O estado inicial do sistema é aquele em que todos os pontos estão no estado de equilíbrio estável trivial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u, v) = (1, 0)} , exceto o ponto central, em que é introduzida uma perturbação com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u, v) = (0, 1)} . Foram usadas condições de fronteira conforme a Figura 1.

  • Figura 1 - Grid para exemplificar as condições de fronteira usadas na simulação.
  • Cada elemento na matriz tem quatro vizinhos, denominados por U (Up), D (Down), L (Left), R (Right). Na Figura 1, o elemento Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , possui os vizinhos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=D=5} , ; o elemento possui como vizinhos , e ; o elemento Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} tem vizinhos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=D=7} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=1} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=8} ; e, finalmente, os vizinhos de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=3} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D=12} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=11} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=2} .

    Essas condições de fronteira e a condição inicial explicada acima buscam reproduzir as mesmas condições usadas na simulação de Sayama.[8]

    Resultados e discussão

    As simulações abaixo reproduzem algumas condições simuladas por Sayama.[8]

    Simulações do Modelo de Gray-Scott para a concentração Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (D_u, D_v) = (2\times10^{-5}, 10^{-5})} . A concentração é maior nas áreas mais claras.
    Alt text
    Concentração de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F, k) = (0.015, 0.055)} , de t=0 até t=2000.
    Alt text
    Concentração de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F, k) = (0.02, 0.05)} , de t=0 até t=2000.
    Simulações do Modelo de Gray-Scott para a concentração Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (D_u, D_v) = (2\times10^{-5}, 10^{-5})} . Nos dois casos abaixo, a concentração é menor nas áreas mais claras.
    Alt text
    Concentração de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F, k) = (0.030, 0.055)} , de t=0 até t=2000.
    Alt text
    Concentração de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F, k) = (0.030, 0.060)} , de t=0 até t=2000.

    Em geral, todas as simulações apresentaram boa concordância qualitativa com os padrões simulados por Sayama;[8] entretanto, as imagens não são isomorficamente equivalentes. Seguem abaixo alguns outros exemplos de simulações:

  • Figura 2. Exemplos de outras simulações realizadas para outros valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} .
  • Uma explicação possível para as discrepâncias observadas é o tamanho do grid utilizado e a aplicação das condições iniciais. Possivelmente, Sayama usou um grid de tamanho par, como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 100 \times 100} , por exemplo, e escolheu dois ou quatro pontos no centro da matriz como condição inicial. Como se trata da simulação de um sistema não linear, os resultados são muito sensíveis às condições iniciais. Além disso, observamos uma forte dependência dos padrões formados em relação à resolução espacial, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta h} .

    Segue abaixo uma amostragem de algumas simulações realizadas e suas posições no diagrama de fases do modelo:

  • Figura 3. Diagrama de fases do modelo de Gray-Scott. Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} está no eixo das ordenadas, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} no eixo das abcissas. Ver [1]. A linha sólida é a curva Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F=4(F+k)^{2}} .
  • Na Figura 3 é possível observar que a grande maioria das condições que geram padrões complexos está na vizinhança da curva Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F=4(F+k)^{2}} , próximo à saliência, no intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.07<k<0.04} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.015<F<0.06} . Os pontos testados são os seguintes (não incluindo os pontos em azul e vermelho que já estão discriminados no gráfico):


    (k,F) = {(0.050, 0.015), (0.050, 0.020), (0.051, 0.022), (0.055, 0.015), (0.055, 0.018), (0.055, 0.020), (0.055, 0.025), (0.059, 0.026), (0.060, 0.025), (0.060, 0.030), (0.060, 0.040), (0.061, 0.038), (0.063, 0.034), (0.065, 0.035), (0.065, 0.040)}


    Nota-se que, de fato, muitos padrões são gerados com a condição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F>4(F+k)^{2}} , ou seja, na região onde o único estado de equilíbrio é o estado trivial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u, v) = (1, 0)} . Como esse estado é sempre estável (ver [2]), independentemente dos valores dos coeficientes de difusão, a instabilidade de Turing não explica a formação de padrões no modelo de Gray-Scott.


    Ainda em relação à Figura 3, o ponto em vermelho (classificado como "R" por Pearson - INCLUIR REFERÊNCIA), com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (k, F) = (0.06, 0.1)} , é um exemplo em que a taxa de alimentação de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} é muito grande em relação à taxa de eliminação (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F+k} ) de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , de modo que o sistema rapidamente atinge o equilíbrio trivial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u, v) = (1, 0)} em todos os pontos. De outro lado, o ponto em azul (classificado como "B" por Pearson - INCLUIR REFERÊNCIA), com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (k, F) = (0.03, 0.02)} , é um exemplo contrário, em que a taxa de eliminação (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F+k} ) de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} é muito grande em relação à taxa de alimentação de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , de modo que, para tempos longos, também não há formação de padrões, mas o estado que se atinge é tal que a concentração de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} é próxima de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} .


    O modelo de Gray-Scott é reconhecido por exibir grande riqueza de padrões. Esses padrões foram originalmente classificados por Pearson. Uma classificação aprimorada, mais recente, pode ser encontrada nas referências.[9] A classificação, de acordo com letras do alfabeto grego (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} , etc), leva em consideração a dinâmica e a formação de padrões complexos estáveis ou não para tempos longos, em que os sistemas, para dadas condições, atingem uma espécie de equilíbrio. Alguns dos padrões formados são linhas (stripes), manchas, pontos, padrões hexagonais. Essas formas estão em constante transformação por um período, interagindo umas com as outras, dividindo-se, mesclando-se. Eventualmente, dependendo das condições, alguns sistemas atingem um padrão estável; outros nunca se estabilizam. Alguns são mais lentos, outros mais rápidos. Por exemplo, padrões do tipo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} levam muito tempo para se formar (não conseguimos observar padrões desse tipo). Outros sistemas dependem muito mais do que outros do tamanho do grid e das condições iniciais (por exemplo, sistemas do tipo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi} , que também não conseguimos observar).


    No geral, a simulação conseguiu reproduzir o comportamento qualitativo dos pontos mostrados no espaço de fases da Figura 3, o que é um resultado notável para um método tão simples como o FCTS, com um grid pequeno e tempo/recurso computacional limitados.

    Programa

    Referências

    Bibliografia

    • C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.
    • H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems". Open SUNY Textbooks, Geneseo, NY, 2015.