Modelo de Gray-Scott: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 217: Linha 217:
Segue abaixo uma amostragem de algumas simulações realizadas e suas posições no diagrama de fases do modelo:
Segue abaixo uma amostragem de algumas simulações realizadas e suas posições no diagrama de fases do modelo:


<li style="display: inline-block;">[[Arquivo:Desmos graph.png|800px|left|thumb|center|'''Figura 3''']]</li>
<li style="display: inline-block;">[[Arquivo:Desmos graph.png|500px|left|thumb|center|'''Figura 3''']]</li>


== Programa ==
== Programa ==

Edição das 15h53min de 26 de fevereiro de 2022

Introdução

Descrição do Modelo

O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como

Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre.

O comportamento geral do sistema pode ser descrito pelas equações abaixo:

A primeira das equações acima pode ser interpretada da seguinte forma. Em um dado ponto, a variação na concentração aumenta proporcionalmente ao laplaciano de naquele ponto, i.e., quando a concentração na vizinhança desse ponto é alta; e proporcionalmente à taxa de reposição de (taxa de alimentação, ou feed rate). A concentração diminui com o termo reativo , que representa a reação .

De outro lado, na segunda das equações acima, a concentração aumenta com o termo reativo e também proporcionalmente ao laplaciano de naquele ponto, mas diminui com a remoção de a uma taxa , mais rápida, portanto, do que a reposição de .

e são os parâmetros do modelo, juntamente com os coeficientes de difusão e .

O sistema pode ser imaginado como consistindo em duas substâncias e , envoltas por uma membrana semipermeável e imersas em um meio em que essas mesmas duas substâncias estão presentes. A membrana permite a entrada da substância , mas não da substância , e permite a saída da substância , mas não da substância .[1]

Análise de estabilidade

Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.

Soluções estacionárias sem difusão

O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:

Somando essas duas equações, relacionamos as variáveis e :

onde definiu-se o parâmetro auxiliar .

Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:

Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir (4) por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :

Disso, pela relação (3), temos que os valores correspondentes para são:

É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:

, para que existam as soluções não-triviais.

Nesse caso, então, há três soluções estacionárias do sistema:[2]

Estabilidade dos estados estacionários (sem difusão)

Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, . Explicitamente, analisando o sistema (1) de equações, temos que e . A matriz Jacobiana do sistema é então dada por:

Analisemos a estabilidade para os três pares de soluções estacionárias:

  • Para :
Por essa ser uma matriz diagonal, os autovalores são justamente as entradas das diagonais; ou seja, e . Uma vez que e são parâmetros positivos, os dois autovalores são reais e negativos, e portanto o ponto é sempre estável.
  • Para , podemos utilizar uma estratégia que simplifica as contas. Em particular, nota-se que os dois pontos obedecem à segunda equação do sistema (2) com . Desse modo, se dividirmos tal equação por , percebemos que ambos os pontos obedecem a:
Dessa equação, podemos calcular as entradas da segunda coluna da matriz jacobiana com facilidade:
Assim, a matriz jacobiana desses pontos fica:
Sabemos que o produto dos autovalores dessa matriz é igual ao seu determinante. Calculando-o, obtém-se:
Dividindo por :[2]
onde se definiu (observação: este é o definido no Gros[2]). Nota-se que a condição de existência para os dois pontos não-triviais é equivalente a . Expandindo os termos, é possível mostrar que a expressão acima pode ser reescrita como:
  • Para o caso (sinal negativo em (11)), temos a cota superior . Portanto, para todo que satisfaça a condição de existência. Como o determinante é negativo, sabemos que os autovalores são reais (comentário: como as entradas da matriz são reais, se os autovalores fossem complexos, seriam também conjugados, de modo que o produto deles fosse igual ao módulo ao quadrado de qualquer um, que seria um valor positivo). Ademais, como seu produto é negativo, eles têm sinais opostos; isto é, um deles é positivo, de modo que o ponto nunca seja estável. Depreendemos desse raciocínio que o determinante da matriz jacobiana de entradas reais ser positivo é uma condição necessária para que haja estabilidade do ponto.
  • Já para (sinal positivo em (11)), temos sempre que . Para verificar a estabilidade, temos que agora calcular o traço da matriz jacobiana, pois o traço é a soma dos autovalores: se os autovalores são reais, eles têm o mesmo sinal por seu determinante ser positivo, de modo que o traço compartilhe o sinal com os dois autovalores; se os autovalores são complexos, eles serão conjugados e o traço será , de modo que a parte real dos autovalores tenha o mesmo sinal do traço. Assim, basta que o traço seja negativo para que o ponto seja estável, e que seja positivo para que seja instável.
No caso, temos que . Esse traço é negativo quando e positivo quando ; ou seja, é estável quando e instável quando (lembrando que para todo e ). Desse modo, pode-se caracterizar uma transição de estabilidade quando .
Utilizando simultaneamente as equações (3) e (8), obtemos:[2]
Substituindo , obteremos ao final:

Estabilidade dos estados estacionários (com difusão)

Precisamos agora analisar a estabilidade dos pontos estacionários na presença de difusão, como prescreve o sistema de equações (1), que descreve o modelo. Para isso, é necessário levar em consideração, para cada um dos estados de equilíbrio, os autovalores da matriz , em que é a matriz diagonal cujas entradas são e :[3]

Se escrevermos, genericamente, que , teremos a seguinte matriz jacobiana de reação-difusão:

Como já detalhado acima, para que o ponto seja estável, tal matriz tem que ter a parte real de todos os seus autovalores negativa, de modo que seu determinante seja positivo () e seu traço negativo ().[4] Impondo tais condições à matriz acima, obteremos, após manipulações:[3]

Se o traço é negativo, vemos que a segunda equação é imediatamente satisfeita, pois o lado esquerdo é positivo em qualquer situação.[3]

  • Para o ponto , utilizamos a matriz (7), obtendo as seguintes desigualdades:
Que são, evidentemente, satisfeitas, por análise simples de sinais de cada lado. Portanto, conclui-se que o ponto é sempre estável, inclusive na presença de difusão.
Esse é um resultado, à primeira vista, surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing).[5] Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não-triviais neste modelo ocorre mesmo quando apenas o estado de equilíbrio trivial existir.[6]

Implementação

Será usado o método FTCS (Foward Time Central Space) para integrar as equações do modelo. Como existem explicações do método em toda literatura e em outras entradas da Wiki (ver, por exemplo, Modelo de Turing), a explicação aqui será sucinta.

O método consiste em discretizar a derivada parcial em relação ao tempo para frente e discretizar as derivadas parciais de segunda ordem em relação ao espaço centralmente. Para uma função :





A partir das duas últimas equações acima é fácil mostrar que o laplaciano em duas dimensões, como será usado no presente trabalho, pode ser escrito como



Fazendo , pode-se simplificar a discretização do laplaciano para



Usando a notação é possível então escrever as equações do modelo de forma discretizada:



Utilizou-se uma rede quadrada de tamanho . O estado do inicial do sistema é aquele em que todos os pontos estão no estado de equilíbrio estável trivial , exceto o ponto central, em que é introduzida uma perturbação com . Foram usadas condições de fronteira conforme a Figura 1.

  • Figura 1 - Grid para exemplificar as condições de fronteira usadas na simulação.
  • Cada elemento na matriz tem quatro vizinhos que são denominados por U (Up), D (Down), L (Left), R (Right). Na Figura 1, o elemento , possui os vizinhos , ; o elemento possui como vizinhos , e ; o elemento tem vizinhos , e ; e, finalmente, os vizinhos de são , , e .

    Essas condições de fronteira e a condição inicial explicada acima buscam reproduzir as mesmas condições usadas na simulação de Sayama.[7]

    Resultados e discussão

    As simulações abaixo reproduzem duas condições simuladas por Sayama.[7]

    Simulações do Modelo de Gray-Scott para a concentração , com Falhou ao verificar gramática (erro de sintaxe): {\displaystyle (D_u, D_v) = (2\times10^{-5}, 10^{-5}). A concentração é maior nas áreas mais claras.}
    Alt text
    Concentração de para , de t=0 até t=2000.
    Alt text
    Concentração de para , de t=0 até t=2000.

    Em geral, todas as simulações apresentaram boa concordância qualitativa com os padrões simulados por Sayama,[7] entretanto, as imagens não são isomorficamente equivalentes. Seguem abaixo alguns exemplos:

  • Figura 2

  • Uma explicação possível para as discrepâncias observadas é o tamanho do grid e a aplicação das condições iniciais. Possivelmente, Sayama usou um grid de tamanho par, como , por exemplo, e escolheu dois ou quatro pontos no centro da matriz como condição inicial. Como se trata da simulação de um sistema não linear, os resultados são muito sensíveis às condições iniciais. Além disso, observamos uma forte dependência dos padrões formados em relação à resolução espacial, .

    O modelo de Gray-Scott é reconhecido por exibir grande riqueza de padrões. Esses padrões foram originalmente classificados por Pearson. Uma classificação aprimorada, mais recente, pode ser encontrada nas referências.

    Segue abaixo uma amostragem de algumas simulações realizadas e suas posições no diagrama de fases do modelo:

  • Figura 3
  • Programa

    Simulação do Modelo de Gray-Scott


    Referências

    Bibliografia

    • C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.
    • H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems". Open SUNY Textbooks, Geneseo, NY, 2015.