Algoritmo de Wang-Landau: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
==Introdução== | ==Introdução== | ||
Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada temperatura <math>T</math>, a abordagem de Wang-Landau estima a densidade de estados <math>g(E)</math> diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia <math>H(E)</math>. | Simulações computacionais, como o método de Monte Carlo, são vastamente utilizadas para estudar transições de fase e fenômenos críticos. O método padrão para simulações de Monte Carlo é o algoritmo de Metropolis, entretanto, algoritmos novos e mais eficientes são usados em simulações modernas, como o algoritmo de Wang-Landau. Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada temperatura <math>T</math>, a abordagem de Wang-Landau estima a densidade de estados <math>g(E)</math> diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia <math>H(E)</math>. <REF WANG LANDAU> | ||
==Amostragem de Wang-Landau== | ==Amostragem de Wang-Landau== |
Edição das 19h27min de 28 de novembro de 2021
Introdução
Simulações computacionais, como o método de Monte Carlo, são vastamente utilizadas para estudar transições de fase e fenômenos críticos. O método padrão para simulações de Monte Carlo é o algoritmo de Metropolis, entretanto, algoritmos novos e mais eficientes são usados em simulações modernas, como o algoritmo de Wang-Landau. Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica a uma dada temperatura , a abordagem de Wang-Landau estima a densidade de estados diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia . <REF WANG LANDAU>
Amostragem de Wang-Landau
No início da simulação, é desconhecido e fazemos uma estimativa inicial para ele. A abordagem mais simples é definir para todas as energias possíveis . A configuração de spin inicial para toda a rede pode ser escolhida arbitrariamente. Então, uma caminhada aleatória no espaço de energia é iniciada pela formação de estados de teste, cada um dos quais é produzido escolhendo aleatoriamente um spin e alterando aleatoriamente seu estado.
Cada vez que uma energia é visitada, a entrada correspondente em é incrementada em 1. A estimativa de é então modificada por um fator multiplicativo , e o valor atualizado realiza um passeio aleatório adicional no espaço de .
Se e são energias antes e depois de um valor de spin ser alterado, a probabilidade de transição da energia para é
A razão das probabilidades de transição de para e de a podem ser calculados como
Logo, o algoritmo de passeio aleatório satisfaz o equilíbrio detalhado:
onde é a probabilidade na energia e é a probabilidade de transição de para .
Algoritmo
Resumindo, o passo a passo do algoritmo pode ser escrito como:
1. Seto e um fator de modificação ;
2. Aleatoriamente, flipo um spin com probabilidade ;
3. Modifico a densidade de estados e atualizo o histograma ;
4. Continuo até o histograma estar reto, então diminuo o valor de e reseto o valor de ;
5. Repito 2-4 até .
Aplicação ao Modelo de Ising 2D
Modelo de Ising
Uma rede 2D que consiste de uma variável discreta em cada sítio que pode ser usada para representar o momento de dipolo magnético de um átomo.
Cada sítio pode ter o valor de spin ou .
O hamiltoniano pode ser calculado por
A soma ocorre sobre todos sítios vizinhos e a interação é ferromagnética para e antiferromagnética para .