Algoritmo de Wang-Landau: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 3: Linha 3:
Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada temperatura <math>T</math>, a abordagem de Wang-Landau estima a densidade de estados <math>g(E)</math> diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia <math>H(E)</math>.
Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada temperatura <math>T</math>, a abordagem de Wang-Landau estima a densidade de estados <math>g(E)</math> diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia <math>H(E)</math>.


==Algoritmo==
==Amostragem de Wang-Landau==
No início da simulação, <math>g(E)</math> é desconhecido e fazemos uma estimativa inicial para ele. A abordagem mais simples é definir <math>g(E) = 1</math> para todas as energias possíveis <math>E</math>. A configuração de spin inicial para toda a rede pode ser escolhida arbitrariamente. Então, uma caminhada aleatória no espaço de energia é iniciada pela formação de estados de teste, cada um dos quais é produzido escolhendo aleatoriamente um spin e alterando aleatoriamente seu estado.
No início da simulação, <math>g(E)</math> é desconhecido e fazemos uma estimativa inicial para ele. A abordagem mais simples é definir <math>g(E) = 1</math> para todas as energias possíveis <math>E</math>. A configuração de spin inicial para toda a rede pode ser escolhida arbitrariamente. Então, uma caminhada aleatória no espaço de energia é iniciada pela formação de estados de teste, cada um dos quais é produzido escolhendo aleatoriamente um spin e alterando aleatoriamente seu estado.


Linha 21: Linha 21:


onde <math>1 / g (E1)</math> é a probabilidade na energia <math>E_1</math> e <math>p (E_1\rightarrow E_2)</math> é a probabilidade de transição de <math>E_1</math> para <math>E_2</math>.
onde <math>1 / g (E1)</math> é a probabilidade na energia <math>E_1</math> e <math>p (E_1\rightarrow E_2)</math> é a probabilidade de transição de <math>E_1</math> para <math>E_2</math>.
====Algoritmo====
Resumindo, o passo a passo do algoritmo pode ser escrito como:
1. Seto <math>g(E) = 1</math> e um fator de modificação <math>f=e</math>;
2. Aleatoriamente, flipo um spin com probabilidade <math> p(E_1 \to E_2) = min(g(E_1)/g(E_2), 1) </math>;
3. Modifico a densidade de estados <math> g(E) \to g(E) \times f </math> e atualizo o histograma <math>H(E)</math>;
4. Continuo até o histograma estar reto, então diminuo o valor de <math>f</math> e reseto o valor de <math>H(E)</math>;
5. Repito 2-4 até <math> \ln f \approx 1 </math>.


==Aplicação ao Modelo de Ising 2D==
==Aplicação ao Modelo de Ising 2D==


====Modelo de Ising====
====Modelo de Ising====
Uma rede 2D que consiste de uma variável discreta em cada sítio que pode ser usada para representar o momento de dipolo magnético de um átomo.
Cada sítio pode ter o valor de spin <math>+1</math> ou <math>-1</math>.
O hamiltoniano pode ser calculado por
<math> \mathcal{H} = -J \sum_{\langle ij \rangle}\sigma_i \sigma_j </math>
A soma ocorre sobre todos sítios vizinhos e a interação é ferromagnética para <math>J>0</math> e antiferromagnética para <math>J<0</math>.
====Implementação====
====Implementação====
====Resultados====
====Resultados====

Edição das 14h44min de 28 de novembro de 2021

Introdução

Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica a uma dada temperatura , a abordagem de Wang-Landau estima a densidade de estados diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia .

Amostragem de Wang-Landau

No início da simulação, é desconhecido e fazemos uma estimativa inicial para ele. A abordagem mais simples é definir para todas as energias possíveis . A configuração de spin inicial para toda a rede pode ser escolhida arbitrariamente. Então, uma caminhada aleatória no espaço de energia é iniciada pela formação de estados de teste, cada um dos quais é produzido escolhendo aleatoriamente um spin e alterando aleatoriamente seu estado.

Cada vez que uma energia é visitada, a entrada correspondente em é incrementada em 1. A estimativa de é então modificada por um fator multiplicativo , e o valor atualizado realiza um passeio aleatório adicional no espaço de .

Se e são energias antes e depois de um valor de spin ser alterado, a probabilidade de transição da energia para é

A razão das probabilidades de transição de para e de a podem ser calculados como

Logo, o algoritmo de passeio aleatório satisfaz o equilíbrio detalhado:

onde é a probabilidade na energia e é a probabilidade de transição de para .

Algoritmo

Resumindo, o passo a passo do algoritmo pode ser escrito como:

1. Seto e um fator de modificação ;

2. Aleatoriamente, flipo um spin com probabilidade ;

3. Modifico a densidade de estados e atualizo o histograma ;

4. Continuo até o histograma estar reto, então diminuo o valor de e reseto o valor de ;

5. Repito 2-4 até .

Aplicação ao Modelo de Ising 2D

Modelo de Ising

Uma rede 2D que consiste de uma variável discreta em cada sítio que pode ser usada para representar o momento de dipolo magnético de um átomo.

Cada sítio pode ter o valor de spin ou .

O hamiltoniano pode ser calculado por

A soma ocorre sobre todos sítios vizinhos e a interação é ferromagnética para e antiferromagnética para .

Implementação

Resultados

Fig1.png Fig2.png Fig3.png