Grupo1 - Dif em 2D: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 225: | Linha 225: | ||
<gallery> | <gallery> | ||
File: gaussseidel1.png | File: gaussseidel1.png| Solução do Problema de Contorno através do Método de Relaxação (utilizando o algoritmo de Gauss-Seidel) | ||
File: overr.png | File: overr.png|Solução do Problema de Contorno através do Método de Super Relaxação (utilizando algoritmo de Gauss-Seidel) | ||
</gallery> | </gallery> | ||
Edição das 02h32min de 24 de outubro de 2017
A equação de Poisson:
é uma equação do tipo Elíptica que representa fenômenos físicos estácionarios relacionados a Eletrostatica, Dinâmica de Fluídos e Transferência de Calor, se a equação passa a ser chamada de Equação de Laplace. Os problemas relacionados a equação de Laplace são estudados pela "Teoria do Potencial".
As soluções da Equação de Laplace são denominadas funções Harmônicas. Como já era de se esperar, os problemas mais habituais na vida de um físico, engenheiro ou matemático ao se depararem com uma EDP, são os problemas com Condições de Contorno, essencialmente será trabalhada a Condição de Dirichlet, que possui fronteiras conhecidas, tendo o seguinte formato:
A equação de Poisson possui forma parecida para o Problema de Dirichlet, que fica:
Para tais problemas, estudaremos os métodos de Relaxação e Super-Relaxação para encontrar as soluções da Equação de Laplace no Quadrado de Lado e faremos (se possível) a solução númerica via Formula de Poisson para a Bola Unitária centrada na origem .
Quadrado de Lado
Forma Analítica da Solução
Seja o problema em , temos:
sendo
Separamos o problema geral de Dirchlet em 4 problemas "menores" tal que obtemos os problemas desde:
...
até:
Podemos então utilizar o Método da Separação de Variáveis para resolver os 4 "probleminhas" e, como a Equação de Laplace é linear, sua soma será a solução completa do Problema de Dirichlet. O método consiste em supor , para então, ao substituirmos na equação obtermos a seguinte expressão:
Podemos isolar as funções e , de fato ficamos com com duas relações que dependem de suas variações, portanto para elas serem sempre iguais, é necessário que sejam constantes ():
Assim obtemos 2 EDOs de segunda ordem, que podem ser resolvidas pelo Método dos Coeficientes a Determinar. Como não é objetivo aqui realizar cálculos analíticos (especialmente "na mão") apenas será resolvido o primeiro problema ():
As condições de contorno mostram que , e .
Dividindo o problema, temos a parte de
Supondo uma solução da forma :
Ou seja, temos a solução de sendo
Utilizando a C.C. vemos que .
Partindo para a segunda equação ,
supondo solução do tipo temos:
Ou seja, temos solução
Utilizando a primeira C.C. obtemos ou seja, temos que
Utilizando a segunda C.C. temos , ou seja, existem infinitos tal que é solução.
Voltando a , temos Finalmente unindo as respostas, temos
sendo
Para os outros problemas, temos soluções parecidas:
sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{2n} = \frac{2}{L}\int_{0}^{L} f_{2}(x) sen(\frac{n \pi y}{L}) dy,}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{3}(x, y) = \phi_{3}(x) \theta_{3}(y) = \sum C_{3n} \frac{senh(\frac{n \pi(L- y)}{L})}{senh(n\pi)}sen(\frac{n \pi x}{L});} sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{3n} = \frac{2}{L}\int_{0}^{L} f_{3}(y) sen(\frac{n \pi x}{L}) dx,}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{4}(x, y) = \phi_{4}(x) \theta_{4}(y) = \sum C_{4n} \frac{senh(\frac{n \pi y}{L})}{senh(n\pi)}sen(\frac{n \pi x}{L});} sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_{4n} = \frac{2}{L}\int_{0}^{L} f_{4}(x) sen(\frac{n \pi x}{L}) dx.}
A solução completa do problema de Dirichlet no quadrado de Lado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} é a soma das quatro soluções parciais: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x, y) = u_{1}(x, y) + u_{2}(x, y) + u_{3}(x, y) + u_{4}(x, y) } .
Algoritmo de Relaxação
Discretizando a equação temos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\mapsto x_{i}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\mapsto y_{j}} para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle j = 1, ..., N} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = \Delta x = \Delta y = N/L} , nos deparamos com uma matriz Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}_{i j} = u(x_{i},y_{j}) = u_{i j}} quadrada sendo as bordas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}_{1 j} = f(0, y) = u_{1 j}} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}_{N j} = f(L, y) = u_{N j}} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}_{i 1} = f(x, 0) = u_{i 1}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}_{i N} = f(x, L) = u_{i N}} .
Realizando-se a discretização, podemos tomar as derivadas:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 u}{\partial x^2} = \frac{u_{(i+1) j} + u_{(i-1) j} -2u_{i j}}{h^2} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 u}{\partial y^2} = \frac{u_{i (j+1)} + u_{i (j-1)} -2u_{i j}}{h^2} }
Substituindo na Equação de Laplace, temos
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u_{(i+1) j} + u_{(i-1) j} -2u_{i j}}{h^2} = - \frac{u_{i (j+1)} + u_{i (j-1)} -2u_{i j}}{h^2}, } ou seja:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{i j} = \frac{u_{(i-1) j} + u_{(i+1) j} + u_{i (j-1)} + u_{i (j+1)}}{4}} ,
ou mais geralmente (supondo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x \neq \Delta y} ):
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{i j} = \frac{(\Delta y)^{2}(u_{(i-1) j} + u_{(i+1) j}) + (\Delta x)^2(u_{i (j-1)} + u_{i (j+1)})}{2((\Delta x)^2 + (\Delta y)^2)}, }
para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i, j = 2, ..., N-1 }
Como condição de parada, foi convencionado tomar o Erro Relativo entre as iterações Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k+1 } , para estimar o erro se faz:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \frac{v^{k+1}}{v^{k}}}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v^{k} = \frac{1}{8} (u_{2 2} + u_{2 (M+1)} + u_{(M+1) 2} + 4u_{\frac{(M+2)}{2} \frac{(M+2)}{2}}+u_{(M+1) (M+1)}) }
Estabilidade
A relaxação é um método Iterativo sobre os pontos vizinhos que pode ser feita de 2 modos, pelo Algoritmo de Jacobi, e pelo de Gauss-Seidel.
O algoritmo de Jacobi pega valores "antigos" para a iteração e possui convergencia muito lenta, por isso não é muito utilizado. Já o algoritmo de Gauss-Seidel pega os valores "novos" (que ja foram calculados) e os "antigos" (que não foram calculados), possui convergencia mais rapida, porém ainda é lenta.
Algoritmos iterativos tendem a convergir para solução unica, se a matriz que as representa for Diagonal Dominante, ou seja:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a_{ii}| \ge \sum_{j=1 (i\neq j)}^{N} |a_{ij}| }
De fato, podemos ver que a equação de Laplace respeita tal desigualdade.
Caso façamos um retangulo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{x} \neq L_{y} }
com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x \neq \Delta y }
, obtemos o erro da imagem a seguir
Método da Super Relaxação
Podemos, assim como no caso não estacionário da condução do calor (Método de Crank Nicholson), que realiza uma média entre os valores explícito e Implícito da Equação, o método da Super relaxação é da seguinte forma:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{ij}^{k+1} = u_{i j}^{k}(1 - \omega) + \omega u_{ij}^{R} }
tal que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{ij}^{R} } é o valor calculado através do método da Relaxação e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega \in [0:2]} .
Exemplos
Exemplo 1
O primeiro problema é descrito pela seguinte expressão, para o domínio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = (0;L) \times (0;L) } :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \Delta u = 0 \forall x \in \Omega \\ u(x,0) = L \big( \forall x \in [0;L] \big) \\ u(x, L) = 0 \big( \forall x \in [0;L] \big) \\ u(0, y) = 0 \big( \forall y \in [0;L] \big) \\ u(L, y) = 0 \big( \forall y \in [0;L] \big) . \end{cases} }
Foram obtidos as soluções mostrados nos gráficos a seguir, através do algoritmo de Gauss-Seidel.