Equação de Cahn-Hilliard: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 128: | Linha 128: | ||
:<math>\Delta t < \displaystyle\frac{(\Delta x)^2}{2}</math> | :<math>\Delta t < \displaystyle\frac{(\Delta x)^2}{2}</math> | ||
== Resultados == | |||
== Referências == | == Referências == |
Edição das 13h43min de 30 de março de 2021
Grupo: Arthur Dornelles, Bruno Zanette, Gabriel De David e Guilherme Hoss
O objetivo deste trabalho é resolver computacionalmente a equação de Cahn-Hilliard, que descreve o processo de decomposição spinodal de uma mistura binária, utilizando o método FTCS (Forward Time Centered Space).
Decomposição Espinodal
Decomposição espinodal é o nome dado ao processo no qual uma pequena perturbação de um sistema faz com que, uma fase homogênea termodinamicamente instável, diminua sua energia e separe-se espontaneamente em duas outras fases coexistentes, esse é um processo que ocorre sem nucleação, ou seja, é instantâneo. Ela é observada, por exemplo, em misturas de metais ou polímeros e pode ser modelada pela equação de Cahn-Hilliard.
A Equação de Cahn-Hilliard
A equação de Cahn-Hilliard descreve o processo de decomposição espinodal de uma mistura binária. Em outras palavras, é uma equação que descreve o processo de separação de fase entre dois componentes de um fluido binário que se separam de maneira espontânea.
Consideraremos - de início - uma mistura binária de dois componentes A e B descritas pelas concentrações dos fluidos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_a(x,t) } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_b(x,t) } , respectivamente.
Além disso, podemos considerar que - para uma mistura binária - Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_a(x,t) + c_b(x,t) = 1} e portanto podemos simplificar para apenas uma concentração Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(x,t) } :
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_a(x,t) = c(x,t), c_b(x,t) = 1 - c(x,t) }
Tendo isso em vista, podemos agora utilizar a primeira lei de Fick da difusão:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J = -D\nabla c }
juntamente da equação da continuidade:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial c}{\partial t} + \nabla \cdot \vec J = 0 }
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} é o coeficiente de difusão e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec J} é o fluxo de difusão. Em seguida, ao combinarmos ambas as equações anteriores o resultado gera a segunda lei de Fick da difusão:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial c}{\partial t} = D {\nabla}^2 c }
Por definição, verificou-se que a concentração não poderia ser a razão da difusão, portanto outra força estaria presente. E, nesse caso, encontrou-se que a principal força responsável pela difusão negativa é o potencial químico. Portanto, outra equação pode ser derivada para generalizar a primeira lei de Fick:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J = -M \nabla \mu }
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} é a mobilidade das partículas (análoga à D) e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} é o potencial químico. Com essa nova equação podemos agora também deduzir uma nova equação para a segunda lei de Fick:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial c}{\partial t} = M {\nabla}^2 \mu }
Essa equação também é conhecida como equação de Cahn-Hilliard.
Nessa equação, podemos usar a definição do potencial químico através da densidade da energia livre de Gibbs como:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu = \frac{\partial g}{\partial c} }
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} é a densidade da energia livre de Gibbs e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} é a concentração.
Tendo em vista a substituição do termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} por um termo que envolva a concentração dos fluidos, utiliza-se uma equação que descreve a densidade de energia desse sistema através da concentração dos mesmos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G = \int_{V}^{} f(c) + {\kappa |\nabla c|}^2 dV }
Nesse caso, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} é a energia livre de Gibbs, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(c)} é a densidade de energia livre devido à contribuições de ambas as fases homogêneas e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\kappa|\nabla c|}^2} é a densidade de energia livre devido ao gradiente de concentração na interface (ou energia de interface).
Além disso, a função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(c)} tem o formato de um poço de potencial duplo, que pode ser representado pela seguinte equação:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(c) = \frac{(c^2 - 1)^2}{4} }
Levando essas informações em conta e - utilizando um parâmetro Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} análogo à largura da interface - que é descrito por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa = \gamma ^2} é possível encontrar uma equação que descreve a densidade de energia livre de Gibbs para um sistema duplo-fásico:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(c) = f(c) + {\gamma}^2{|\nabla c |}^2 }
Com essas igualdades agora se torna possível o cálculo de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} em função da concentração dos fluidos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu = \frac{\partial g}{\partial c} = \frac{\partial f(c)}{\partial c} + \frac{\partial {(\gamma}^2{|\nabla c |}^2)}{\partial c} = \frac{\partial (\frac{(c^2 - 1)^2}{4})}{\partial c} + {\gamma}^2 {\nabla}^2 c = c^3 - c + {\gamma}^2 {\nabla}^2 c }
Finalmente - utilizando a última expressão encontrada - torna-se possível reescrever o potencial químico em função da mobilidade de suas partículas (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} ) e a concetração do fluido:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial c}{\partial t} = M {\nabla}^2 (c^3 - c - \gamma {\nabla}^2 c) }
Essa equação final é chamada de equação de Cahn-Hilliard.
Método FTCS (Forward Time Centered Space)
O FTCS é um método numérico utilizado para resolver equações diferenciais parciais, tais como a difusão do calor e do transporte de massa, traduzindo, significa "Progressivo no tempo, avançado no espaço". Esse método pode ser utilizado em sua forma implícita ou explícita que estão descritas abaixo.
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\to\Delta t}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle j\to\Delta x}
FTCS Explicito
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial f}{\partial t}\to \frac{f_{j}^{n+1}-f_{j}^{n}}{\Delta t}}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial ^2 f}{\partial x^2}\to \frac{f_{j-1}^{n}-2 f_{j}^{n} + f_{j+1}^n}{\Delta x^2}}
Para difusão:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_j^{n+1}= f_j^{n} + \frac{D\Delta t}{(\Delta x)^2} (f_{j-1}^{n} - 2f_j^{n} + f_{j+1}^{n})}
Resolução do Cahn-Hilliard Equation para FTCS explicito para x somente:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle \frac{\partial c}{\partial t} = D\nabla^{2}(c^{3}-c-\gamma^2\nabla^{2}c)}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle \frac{c_{j}^{n+1}-c_{j}^{n}}{\Delta t} = D\displaystyle \frac{\partial ^2 }{\partial x^2}(c^3 - c - \gamma^2 \displaystyle \frac{\partial ^2 c}{\partial x^2})}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle \frac{c_{j}^{n+1}-c_{j}^{n}}{\Delta t} = D\frac{u_{j-1}^n-2u_j^n + u_{j+1}^n}{(\Delta x)^2}}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \displaystyle \frac{c_{j}^{n+1}-c_{j}^{n}}{\Delta t} = D\left(\frac{(c_{j-1}^n)^3-2(c_j^n)^3 + (c_{j+1}^n)^3}{(\Delta x)^2} - \frac{c_{j-1}^n-2 c_i^n + c_{j+1}^n}{(\Delta x)^2} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^4}\right)}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{j}^{n+1} = D\Delta t \left (\frac{(c_{j-1}^n)^3-2(c_i^n)^3 + (c_{j+1}^n)^3}{(\Delta x)^2} - \frac{c_{j-1}^n-2 c_j^n + c_{j+1}^n}{(\Delta x)^2} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^4} \right) + c_j^n}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{j}^{n+1} = \frac{D\Delta t}{(\Delta x)^2} \left ((c_{j-1}^n)^3-2(c_i^n)^3 + (c_{j+1}^n)^3 - {c_{j-1}^n+2 c_j^n - c_{j+1}^n} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^2} \right) + c_j^n }
Condição de Estabilidade
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta t < \displaystyle\frac{(\Delta x)^2}{2}}
Resultados
Referências
- SIBBING, Zimo. Numerical methods for the implentation of the Cahn-Hilliard equation in one dimension and a dynamic boundary condition in two dimensions, tese de bacharelado, 2015.
- MARKUS, Wilczek. The Cahn-Hilliard Equation, 2015.
- CAHN, John W.; HILLIARD, John E. Free Energy of a Nonuniform System. I. Interfacial Free Energy. The Journal of Chemical Physics, 1958.