Equação de Cahn-Hilliard: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 102: Linha 102:
:<math> c_{j}^{n+1} = D\Delta t \left (\frac{(c_{j-1}^n)^3-2(c_i^n)^3 + (c_{j+1}^n)^3}{(\Delta x)^2} - \frac{c_{j-1}^n-2 c_j^n + c_{j+1}^n}{(\Delta x)^2} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^4} \right) + c_j^n</math>
:<math> c_{j}^{n+1} = D\Delta t \left (\frac{(c_{j-1}^n)^3-2(c_i^n)^3 + (c_{j+1}^n)^3}{(\Delta x)^2} - \frac{c_{j-1}^n-2 c_j^n + c_{j+1}^n}{(\Delta x)^2} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^4} \right) + c_j^n</math>


:<math>c_{j}^{n+1} = \frac{D\Delta t}{(\Delta x)^2} \left ((c_{j-1}^n)^3-2(c_i^n)^3 + (c_{j+1}^n)^3 - {c_{j-1}^n-2 c_j^n + c_{j+1}^n} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^2} \right) + c_j^n </math>
:<math>c_{j}^{n+1} = \frac{D\Delta t}{(\Delta x)^2} \left ((c_{j-1}^n)^3-2(c_i^n)^3 + (c_{j+1}^n)^3 - {c_{j-1}^n+2 c_j^n - c_{j+1}^n} - \gamma^2\frac{c_{j-2}^n-4c_{j-1}^n + 6c_{j}^n -4c_{j+1}^n + c_{j+2}^n}{(\Delta x)^2} \right) + c_j^n </math>


== Referências ==
== Referências ==

Edição das 18h08min de 29 de março de 2021

Grupo: Arthur Dornelles, Bruno Zanette, Gabriel De David, Guilherme Hoss

O objetivo deste trabalho é resolver computacionalmente a equação de Cahn-Hilliard, que descreve o processo de decomposição spinodal de uma mistura binária, utilizando o método FTCS (Forward Time Centered Space).

Decomposição Espinodal

Decomposição espinodal é o nome dado ao processo no qual uma pequena perturbação de um sistema faz com que, uma fase homogênea termodinamicamente instável, diminua sua energia e separe-se espontaneamente em duas outras fases coexistentes, esse é um processo que ocorre sem nucleação, ou seja, é instantâneo. Ela é observada, por exemplo, em misturas de metais ou polímeros e pode ser modelada pela equação de Cahn-Hilliard.

A Equação de Cahn-Hilliard

A equação de Cahn-Hilliard descreve o processo de decomposição espinodal de uma mistura binária. Em outras palavras, é uma equação que descreve o processo de separação de fase entre dois componentes de um fluido binário que se separam de maneira espontânea.

Consideraremos - de início - uma mistura binária de dois componentes A e B descritas pelas concentrações dos fluidos e , respectivamente.

Além disso, podemos considerar que - para uma mistura binária - e portanto podemos simplificar para apenas uma concentração :

Tendo isso em vista, podemos agora utilizar a primeira lei de Fick da difusão:

para encontrarmos:

Onde é um coeficiente de mobilidade ( e e são os potenciais químicos dos respectivos componentes. Em seguida, ao utilizarmos termodinâmica clásisca, podemos expressar a diferença entre os potenciais em função da variação de um potencial de energia livre de Gibbs que chamaremos de :

Utilizando essa equação em conjunto com a equação do fluxo chegamos em:

E, para alcançarmos a equação de Cahn-Hilliard, podemos simplesmente assumir que o sistema conserva as massas, ou seja:

Substituindo J pelo fluxo que encontramos anteriormente temos:

A energia livre de Gibbs tipicamente escolhida para a equação é:

Nessa equação, é chamada de densidade de energia livre devido à contribuições de ambas fases homogêneas; é a densidade de energia livre devido ao gradiente de concentração na interface (ou energia da interface).

A função tem o formato de um poço de potencial duplo, que pode ser representado pela seguinte equação:

Método FTCS (Forward Time Centered Space)

O FTCS é um método numérico utilizado para resolver equações diferenciais parciais, tais como a difusão do calor e do transporte de massa, traduzindo, significa "Progressivo no tempo, avançado no espaço". Esse método pode ser utilizado em sua forma implícita ou explícita que estão descritas abaixo.

FTCS Explicito

Para difusão:

FTCS Implicito (BTCS)


Para difusão:


Resolução do Cahn-Hilliard Equation para FTCS explicito para x somente:


Referências