Equação de Schrödinger Unidimensional: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
 
(14 revisões intermediárias por 3 usuários não estão sendo mostradas)
Linha 2: Linha 2:


<math> -\frac{\hbar}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = i\hbar\frac{\partial\Psi}{\partial t} </math>
<math> -\frac{\hbar}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = i\hbar\frac{\partial\Psi}{\partial t} </math>
== O Método De Crank-Nicolson==


A fim de resolvê-la numericamente para diferentes tipos de potenciais, usou-se o Método de Crank-Nicolson de resolução de EDPs. Este método baseia-se em combinar os métodos explícito e implícito (com igual contribuição) para aumentar sua estabilidade.   
A fim de resolvê-la numericamente para diferentes tipos de potenciais, usou-se o Método de Crank-Nicolson de resolução de EDPs. Este método baseia-se em combinar os métodos explícito e implícito (com igual contribuição) para aumentar sua estabilidade.   
Linha 34: Linha 36:
Como dito, o Método de Crank-Nicolson é uma combinação dos métodos implícito e explícito, cada um tendo o mesmo peso de 1/2. Ao somarmos as duas equações (cada uma multiplicada por 0.5), ficaremos com a seguinte expressão:
Como dito, o Método de Crank-Nicolson é uma combinação dos métodos implícito e explícito, cada um tendo o mesmo peso de 1/2. Ao somarmos as duas equações (cada uma multiplicada por 0.5), ficaremos com a seguinte expressão:


<math> \Psi_j^{n+1} = \Psi_{j}^{n} + \frac{i \Delta t}{4 \Delta x^2} (\Psi_{j+1}^{n} + \Psi_{j-1}^{n} - 2 \Psi_{j}^{n} + \Psi_{j+1}^{n+1} + \Psi_{j-1}^{n+1} - 2 \Psi_{j}^{n+1}) - \frac{i\Delta t}{2} V_j (\Psi_{j}^{n} + \Psi_{j}^{n+1})</math>
<math> \Psi_j^{n+1} = \Psi_{j}^{n} + \frac{i \Delta t}{4 \Delta x^2} (\Psi_{j+1}^{n} + \Psi_{j-1}^{n} - 2 \Psi_{j}^{n} + \Psi_{j+1}^{n+1} + \Psi_{j-1}^{n+1} - 2 \Psi_{j}^{n+1}) - \frac{i\Delta t}{2} V_j (\Psi_{j}^{n} + \Psi_{j}^{n+1})</math>


que, ao reorganizarmos para isolar os <math> \Psi_j^{n+1}</math>, resulta em:
que, ao reorganizarmos para isolar os <math> \Psi_j^{n+1}</math>, resulta em:


  <math> \left(1+\frac{i \Delta t}{2 \Delta x^2}+\frac{i\Delta t}{2} V_j\right)\Psi_j^{n+1} - \frac{i \Delta t}{4 \Delta x^2}\Psi_{j+1}^{n+1} - \frac{i \Delta t}{4 \Delta x^2} \Psi_{j-1}^{n+1} = \left(1-\frac{i \Delta t}{2 \Delta x^2}-\frac{i\Delta t}{2} V_j\right)\Psi_{j}^{n} + \frac{i \Delta t}{4 \Delta x^2}\Psi_{j+1}^{n} +\frac{i \Delta t}{4 \Delta x^2} \Psi_{j-1}^{n}</math>
  <math> \left(1+\frac{i \Delta t}{2 \Delta x^2}+\frac{i\Delta t}{2} V_j\right)\Psi_j^{n+1} - \frac{i \Delta t}{4 \Delta x^2}\Psi_{j+1}^{n+1} - \frac{i \Delta t}{4 \Delta x^2} \Psi_{j-1}^{n+1} = \left(1-\frac{i \Delta t}{2 \Delta x^2}-\frac{i\Delta t}{2} V_j\right)\Psi_{j}^{n} + \frac{i \Delta t}{4 \Delta x^2}\Psi_{j+1}^{n} +\frac{i \Delta t}{4 \Delta x^2} \Psi_{j-1}^{n}</math>
Linha 47: Linha 49:
\begin{pmatrix} \Psi_1^{n+1} \\ \Psi_2^{n+1} \\ \vdots \\ \Psi_{j}^{n+1}\end{pmatrix}  
\begin{pmatrix} \Psi_1^{n+1} \\ \Psi_2^{n+1} \\ \vdots \\ \Psi_{j}^{n+1}\end{pmatrix}  
=  
=  
\begin{pmatrix} \Psi_1^{n} \\ \Psi_2^{n} \\ \vdots \\ \Psi_{j}^{n} \end{pmatrix} \hspace{5pt}; b=\frac{i \Delta t}{4 \Delta x^2}
\begin{pmatrix}
1 - 2b - \frac{i\Delta t V_j}{2} & +b & 0 & \cdots & 0 & 0 & 0\\ +b & 1 - 2b - \frac{i\Delta t V_j}{2} & +b &0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots& \vdots& \vdots \\ 0 & 0 & 0 & \cdots & 0 & +b & 1 - 2b - \frac{i\Delta t V_j}{2}
\end{pmatrix}
\begin{pmatrix} \Psi_1^{n} \\ \Psi_2^{n} \\ \vdots \\ \Psi_{j}^{n} \end{pmatrix}   ;
</math>
</math>
com
<math> b=\frac{i \Delta t}{4 \Delta x^2}</math>.
Podemos notar que a diferença entre as matrizes que multiplicam <math> \Psi_j^{n+1}</math> e <math> \Psi_j^{n}</math> é somente o sinal das componente imaginárias. Assim, a equação final pode ser escrita como:
<math> A\Psi_j^{n+1} = A^*\Psi_j^{n}</math>, onde A é a matriz <math>\begin{pmatrix}
1 + 2b + \frac{i\Delta t V_j}{2} & -b & 0 & \cdots & 0 & 0 & 0\\ -b & 1 + 2b + \frac{i\Delta t V_j}{2} & -b &0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots& \vdots& \vdots \\ 0 & 0 & 0 & \cdots & 0 & -b & 1 + 2b + \frac{i\Delta t V_j}{2}
\end{pmatrix} </math>
===Estabilidade do Método de Crank-Nicolson===
Para verificar a estabilidade, devemos primeiro olhar para a equação que define o método:
<math> \left(1+\frac{i \Delta t}{2 \Delta x^2}+\frac{i\Delta t}{2} V_j\right)\Psi_j^{n+1} - \frac{i \Delta t}{4 \Delta x^2}\Psi_{j+1}^{n+1} - \frac{i \Delta t}{4 \Delta x^2} \Psi_{j-1}^{n+1} = \left(1-\frac{i \Delta t}{2 \Delta x^2}-\frac{i\Delta t}{2} V_j\right)\Psi_{j}^{n} + \frac{i \Delta t}{4 \Delta x^2}\Psi_{j+1}^{n} +\frac{i \Delta t}{4 \Delta x^2} \Psi_{j-1}^{n}</math>
Para simplificar, chamaremos <math>\frac{i \Delta t}{4 \Delta x^2}</math> de b. Nesse caso, temos:
<math> \left(1+2b+\frac{i\Delta t}{2} V_j\right)\Psi_j^{n+1} - b\Psi_{j+1}^{n+1} - b\Psi_{j-1}^{n+1} = \left(1-2b-\frac{i\Delta t}{2} V_j\right)\Psi_{j}^{n} + b\Psi_{j+1}^{n} +b\Psi_{j-1}^{n}</math>
Definimos os Modos de Fourier:
<math>\Psi_{j}^{n} \approx A^{n}e^{iqjh}</math>
Assim, obtemos:
<math> \left(1+2b+\frac{i\Delta t}{2} V_j\right)A^{n+1}e^{iqjh}- bA^{n+1}e^{iq(j-1)h} - bA^{n+1}e^{iq(j+1)h} = \left(1-2b-\frac{i\Delta t}{2} V_j\right)A^{n}e^{iqjh} + bA^{n}e^{iq(j-1)h} +bA^{n}e^{iq(j+1)h}</math>
Dividindo tudo por <math>e^{iqjh}</math>:
<math> \left(1+2b+\frac{i\Delta t}{2} V_j\right)A^{n+1}- bA^{n+1}e^{-iqh} - bA^{n+1}e^{iqh} = \left(1-2b-\frac{i\Delta t}{2} V_j\right)A^{n} + bA^{n}e^{-iqh} +bA^{n}e^{iqh}</math>
Escrito de outra forma:
<math> A^{n+1}\left[1+\frac{i\Delta t}{2} V_j -b(e^{-iqh}-2+e^{iqh})\right] = A^{n}\left[1-\frac{i\Delta t}{2} V_j +b(e^{-iqh}-2+e^{iqh})\right] </math>
Utilizando relações trigonométricas:
<math> A^{n+1}\left[1+\frac{i\Delta t}{2} V_j -b(-sin^2(\frac{qh}2))\right] = A^{n}\left[1-\frac{i\Delta t}{2} V_j +b(-sin^2(\frac{qh}2))\right]</math>
Assim, obtemos o fator de amplificação:
<math>\left|\frac{A^{n+1}}{A^n}\right| = \left|\frac{1-\frac{i\Delta t}{2} V_j -b(sin^2(\frac{qh}2))}{1+\frac{i\Delta t}{2} V_j +b(sin^2(\frac{qh}2))}\right| \leq 1</math>
Portanto, o método é incondicionalmente estável.
== Exemplos de Potenciais ==
=== Oscilador Harmônico ===
O oscilador harmônico quântico consiste de uma partícula em uma zona onde o potencial possui comportamento harmônico, ou seja, depende de <math> x^2 </math>. Em nosso exemplo, inserimos um pacote de formato gaussiano no interior de um potencial harmônico e observamos sua evolução temporal.
[[Arquivo:H_oscilator.gif]]
Abaixo encontra-se o código usado em Júlia.
<br />
<source lang="julia">
using Plots
# Definição de constantes
ħ = 1
xmax = 100
tmax = 150
m = 1
Δt = 0.2
Δx = 0.25
σ = 2
k = 75
ω = 0.1
x0 = xmax/2
# Definição do espaço de integração e do pacote de onda inicial
x = collect(0:Δx:xmax)
Ψ_HO = zeros(Complex{Float64}, length(x))
for (i, val) in enumerate(x)
    Ψ_HO[i] = 0.5*exp(-(val - xmax/3)^2/(2*σ^2))*exp(im*k*(val-xmax/3))
end
# Potencial do oscilador harmônico
function V_HO(x)
    return 0.5 * m * (ω^2) * ((x - x0)^2)
end
# Pré-cálculo do potencial do oscilador harmônico
V_HO_values = [V_HO(x_i) for x_i in x[2:end-1]]
# Matrizes de evolução temporal
A_HO = zeros(Complex{Float64}, length(x)-2, length(x)-2)
for i in 1:length(x)-2, j in 1:length(x)-2
    if i == j
        A_HO[i, j] = 1 + im * (Δt / (2ħ)) * (ħ^2 / (m * Δx^2) + V_HO_values[i])
    elseif i == j + 1 || i == j - 1
        A_HO[i, j] = -im * (ħ * Δt) / (4 * m * Δx^2)
    end
end
invA_HO = inv(A_HO)
B_HO = conj(A_HO)
# Criação do GIF
anim = @animate for t in 0:Δt:tmax
    Ψ_HO[2:end-1] .= invA_HO * (B_HO * Ψ_HO[2:end-1])
    plot(x, abs2.(Ψ_HO), xlabel="Position", title="Time: $t", ylims=(0, 1), label="|Ψ|²")
    plot!(x, V_HO.(x), label="Potential V(x)")
end
gif_path = "/gif/path/harmonic_oscilator.gif"
gif(anim, gif_path, fps=45)
</source><br />
=== Barreira (Tunelamento) ===
Na mecânica quântica partículas podem existir, mesmo que com baixa probabilidade, em regiões que classicamente seriam proibidas. Este é o caso da barreira, onde uma partícula atravessa uma região onde sua energia total é negativa. Chamamos este fenômeno de tunelamento. A seguir, há um exemplo onde inserimos um pacote de formato gaussiano se deslocando em direção a uma barreira de potencial, de forma que parte da onda é refletida de volta e outra tunela pela barreira.
[[Arquivo:Tunneling.gif]]
Abaixo encontra-se o código usado em Júlia.
<br />
<source lang="julia">
using Plots
# Definição de constantes
ħ = 1
xmax = 500
tmax = 200
m = 1
Δt = 0.2
Δx = 0.25
σ = 1.5
k = 50
ω = 0.1
# Definição do espaço de integração e do pacote de onda inicial
x = collect(0:Δx:xmax)
Ψ = zeros(Complex{Float64}, length(x))
for (i, val) in enumerate(x)
    Ψ[i] = Ψ[i] = 0.5*exp(-(val - xmax/2.5)^2/(2*σ^2))*exp(-im*k*(val))
end
# Potencial barreira
function V(arg)
    if arg > xmax*0.5 && arg <= xmax*0.51
        return 0.1
    else
        return 0
    end
end
# Pré-cálculo do potencial V
V_values = [V(x_i) for x_i in x[2:end-1]]
# Matrizes de evolução temporal A
A = zeros(Complex{Float64}, length(x)-2, length(x)-2)
for i in 1:length(x)-2, j in 1:length(x)-2
    if i == j
        A[i, j] = 1 + im * (Δt / (2ħ)) * (ħ^2 / (m * Δx^2) + V_values[i])
    elseif i == j + 1 || i == j - 1
        A[i, j] = -im * (ħ * Δt) / (4 * m * Δx^2)
    end
end
invA = inv(A)
B = conj(A)
# Criação do GIF
anim = @animate for t in 0:Δt:tmax
    global Ψ[2:length(x)-1] = invA * (B * Ψ[2:length(x)-1])
    plot(x, abs2.(Ψ), xlabel="Position", title="Time: $t", ylims=(0, 0.1), label="|Ψ|²")
    plot!(x, V.(x), label="Potential V(x)")
end every 10
gif_path = "/gif/path/tunneling.gif"
gif(anim, gif_path, fps = 30)
</source><br />
=== Poço Finito ===
O contrário da barreira é o chamado de poço de potencial. Ao invés da partícula atravessá-lo por completo, uma parte do pacote de onda é refletido, uma parte é transmitido e outra ainda fica preso no meio do poço. Veja o exemplo.
[[Arquivo:Pit.gif]]
Abaixo encontra-se o código usado em Júlia.
<br />
<source lang="julia">
using Plots
dt = 0.1
dx = 0.25
L = 50
x = collect(0:dx:L)
size(x)
function V_p(x)
    if x<L/3
        return 0.1
    elseif x>2L/3
        return 0.1
    else
        return 0
    end
end
b = dt*im/(4*dx^2)
A_p = [if i==j; 1 - 2b  - V_p(i)*dt*im/2 elseif i==dx+j || i==j-dx; b else 0 end for i=0:dx:L, j=0:dx:L]
B_p = @. conj(A_p)
IB_p = inv(B_p)
len = length(x)
ψ = [(sqrt(1/(8*pi))*exp(-(val - L/4)^2/(8))*exp(-im*75*(val-L/4))) for val in x] 
for (i,num) in enumerate(ψ)
    if abs(num)<1e-10;
        ψ[i]=0
    end
end
ves_p = @. V_p(x)
t=0
@gif for t in 0:dt:50
    ψ[2:end-1] = IB_p[2:end-1,2:end-1]*A_p[2:end-1,2:end-1]*ψ[2:end-1]
for (i,num) in enumerate(ψ)
    if abs(num)<1e-10;
        ψ[i]=0
    end
end
    plot(x,abs2.(ψ),c="red",label="|ψ|^2")
    #plot!([x for x=0:dx:L],imag(ψ),c="blue")
    plot!([x for x=0:dx:L],ves_p,c="blue",label="V(x)")
    plot!(ylim=[0,0.15],title="t=$t")
end
</source><br />
== Referências ==
# Griffiths, DAVID. Introduction to Quantum Mechanics 3ed. 2018.
# Scherer, CLÁUDIO. Métodos Computacionais da Física. 2010.

Edição atual tal como às 17h25min de 27 de abril de 2024

Conhecer o estado de uma partícula, na Mecânica Clássica, é saber, em um determinado momento, sua velocidade e sua posição. A partir destes valores, é possível determinar os seus futuros estados utilizando as relações fornecidas pelas Leis de Newton. Na Mecânica Quântica, porém, o estado físico não é mais caracterizado por uma quantidade discreta de valores numéricos, e sim, por uma função. A chamada Função de Onda, , nos informa a evolução temporal do estado quântico de uma partícula, seguindo a Equação de Schrödinger. Em uma dimensão, a Equação de Schrödinger é dada por:

O Método De Crank-Nicolson

A fim de resolvê-la numericamente para diferentes tipos de potenciais, usou-se o Método de Crank-Nicolson de resolução de EDPs. Este método baseia-se em combinar os métodos explícito e implícito (com igual contribuição) para aumentar sua estabilidade.

O método explícito FTCS (Forward Time Central Space) consiste em tomar derivadas temporais "para frente" e manter a derivada espacial centrada.

;

Tomando (unidades atômicas), ao inserirmos as expressões acima na Equação de Schrödinger, temos que:

Simplificando a notação para , onde representa a posição e o tempo, e reorganizando os termos, ficamos com:


O método implícito é semelhante, porém a derivada temporal é "para trás".

O que nos leva a ter:

que, com uma substituição de variável (que é muda), nos dá, enfim:

Como dito, o Método de Crank-Nicolson é uma combinação dos métodos implícito e explícito, cada um tendo o mesmo peso de 1/2. Ao somarmos as duas equações (cada uma multiplicada por 0.5), ficaremos com a seguinte expressão:

que, ao reorganizarmos para isolar os , resulta em:


Para resolver a equação em simultaneamente para ambos os tempos e em todos os pontos, escrevemos a equação em forma matricial:

com .

Podemos notar que a diferença entre as matrizes que multiplicam e é somente o sinal das componente imaginárias. Assim, a equação final pode ser escrita como:

, onde A é a matriz 

Estabilidade do Método de Crank-Nicolson

Para verificar a estabilidade, devemos primeiro olhar para a equação que define o método:


Para simplificar, chamaremos de b. Nesse caso, temos:


Definimos os Modos de Fourier:

Assim, obtemos:

Dividindo tudo por :

Escrito de outra forma:

Utilizando relações trigonométricas:

Assim, obtemos o fator de amplificação:

Portanto, o método é incondicionalmente estável.

Exemplos de Potenciais

Oscilador Harmônico

O oscilador harmônico quântico consiste de uma partícula em uma zona onde o potencial possui comportamento harmônico, ou seja, depende de . Em nosso exemplo, inserimos um pacote de formato gaussiano no interior de um potencial harmônico e observamos sua evolução temporal.

H oscilator.gif


Abaixo encontra-se o código usado em Júlia.


using Plots

# Definição de constantes
ħ = 1
xmax = 100
tmax = 150
m = 1
Δt = 0.2
Δx = 0.25
σ = 2
k = 75
ω = 0.1
x0 = xmax/2

# Definição do espaço de integração e do pacote de onda inicial
x = collect(0:Δx:xmax)
Ψ_HO = zeros(Complex{Float64}, length(x))
for (i, val) in enumerate(x)
    Ψ_HO[i] = 0.5*exp(-(val - xmax/3)^2/(2*σ^2))*exp(im*k*(val-xmax/3))
end

# Potencial do oscilador harmônico
function V_HO(x)
    return 0.5 * m * (ω^2) * ((x - x0)^2)
end

# Pré-cálculo do potencial do oscilador harmônico
V_HO_values = [V_HO(x_i) for x_i in x[2:end-1]]

# Matrizes de evolução temporal
A_HO = zeros(Complex{Float64}, length(x)-2, length(x)-2)
for i in 1:length(x)-2, j in 1:length(x)-2
    if i == j
        A_HO[i, j] = 1 + im * (Δt / (2ħ)) * (ħ^2 / (m * Δx^2) + V_HO_values[i])
    elseif i == j + 1 || i == j - 1
        A_HO[i, j] = -im * (ħ * Δt) / (4 * m * Δx^2)
    end
end

invA_HO = inv(A_HO)
B_HO = conj(A_HO)

# Criação do GIF
anim = @animate for t in 0:Δt:tmax
    Ψ_HO[2:end-1] .= invA_HO * (B_HO * Ψ_HO[2:end-1])
    plot(x, abs2.(Ψ_HO), xlabel="Position", title="Time: $t", ylims=(0, 1), label="|Ψ|²")
    plot!(x, V_HO.(x), label="Potential V(x)")
end

gif_path = "/gif/path/harmonic_oscilator.gif"
gif(anim, gif_path, fps=45)


Barreira (Tunelamento)

Na mecânica quântica partículas podem existir, mesmo que com baixa probabilidade, em regiões que classicamente seriam proibidas. Este é o caso da barreira, onde uma partícula atravessa uma região onde sua energia total é negativa. Chamamos este fenômeno de tunelamento. A seguir, há um exemplo onde inserimos um pacote de formato gaussiano se deslocando em direção a uma barreira de potencial, de forma que parte da onda é refletida de volta e outra tunela pela barreira.

Tunneling.gif

Abaixo encontra-se o código usado em Júlia.


using Plots

# Definição de constantes
ħ = 1
xmax = 500
tmax = 200
m = 1
Δt = 0.2
Δx = 0.25
σ = 1.5
k = 50
ω = 0.1

# Definição do espaço de integração e do pacote de onda inicial
x = collect(0:Δx:xmax)
Ψ = zeros(Complex{Float64}, length(x))
for (i, val) in enumerate(x)
    Ψ[i] = Ψ[i] = 0.5*exp(-(val - xmax/2.5)^2/(2*σ^2))*exp(-im*k*(val))
end

# Potencial barreira
function V(arg)
    if arg > xmax*0.5 && arg <= xmax*0.51
        return 0.1
    else
        return 0
    end
end

# Pré-cálculo do potencial V
V_values = [V(x_i) for x_i in x[2:end-1]]

# Matrizes de evolução temporal A
A = zeros(Complex{Float64}, length(x)-2, length(x)-2)
for i in 1:length(x)-2, j in 1:length(x)-2
    if i == j
        A[i, j] = 1 + im * (Δt / (2ħ)) * (ħ^2 / (m * Δx^2) + V_values[i])
    elseif i == j + 1 || i == j - 1
        A[i, j] = -im * (ħ * Δt) / (4 * m * Δx^2)
    end
end

invA = inv(A)
B = conj(A)

# Criação do GIF
anim = @animate for t in 0:Δt:tmax
    global Ψ[2:length(x)-1] = invA * (B * Ψ[2:length(x)-1])
    plot(x, abs2.(Ψ), xlabel="Position", title="Time: $t", ylims=(0, 0.1), label="|Ψ|²")
    plot!(x, V.(x), label="Potential V(x)")
end every 10

gif_path = "/gif/path/tunneling.gif"
gif(anim, gif_path, fps = 30)


Poço Finito

O contrário da barreira é o chamado de poço de potencial. Ao invés da partícula atravessá-lo por completo, uma parte do pacote de onda é refletido, uma parte é transmitido e outra ainda fica preso no meio do poço. Veja o exemplo.

Pit.gif

Abaixo encontra-se o código usado em Júlia.


using Plots

dt = 0.1
dx = 0.25
L = 50
x = collect(0:dx:L)
size(x)	

function V_p(x)
    if x<L/3
        return 0.1
    elseif x>2L/3
        return 0.1
    else
        return 0
    end
end

b = dt*im/(4*dx^2)
A_p = [if i==j; 1 - 2b  - V_p(i)*dt*im/2 elseif i==dx+j || i==j-dx; b else 0 end for i=0:dx:L, j=0:dx:L]
B_p = @. conj(A_p)
IB_p = inv(B_p)

len = length(x)
ψ = [(sqrt(1/(8*pi))*exp(-(val - L/4)^2/(8))*exp(-im*75*(val-L/4))) for val in x]  
for (i,num) in enumerate(ψ)
    if abs(num)<1e-10; 
        ψ[i]=0 
    end
end

ves_p = @. V_p(x)

t=0
@gif for t in 0:dt:50
    ψ[2:end-1] = IB_p[2:end-1,2:end-1]*A_p[2:end-1,2:end-1]*ψ[2:end-1]
for (i,num) in enumerate(ψ)
    if abs(num)<1e-10; 
        ψ[i]=0 
    end
end
    plot(x,abs2.(ψ),c="red",label="|ψ|^2")
    #plot!([x for x=0:dx:L],imag(ψ),c="blue")
    plot!([x for x=0:dx:L],ves_p,c="blue",label="V(x)")
    plot!(ylim=[0,0.15],title="t=$t")
end


Referências

  1. Griffiths, DAVID. Introduction to Quantum Mechanics 3ed. 2018.
  2. Scherer, CLÁUDIO. Métodos Computacionais da Física. 2010.