Modelo Brusselator de Reação-Difusão: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
 
(155 revisões intermediárias por 3 usuários não estão sendo mostradas)
Linha 1: Linha 1:
''' Grupo: Carolina Lenzi, Eric Naiber e Vitória Xavier '''
''' Grupo: Carolina Lenzi, Eric Naiber e Vitória Xavier '''


[[Arquivo:PosAleatoriaReduced.gif|thumb|600px|'''Figura 1:''' Variação da concentração em um recipiente de 100x100. Áreas em amarelo correspondem a uma grande quantidade de reagente U. ]]
O objetivo deste trabalho é implementar o modelo de reação-difusão Brusselator em duas dimensões, frequentemente utilizado para estudar sistemas complexos químicos e biológicos. O modelo é um sistema não linear de equações diferenciais parciais e foi proposto em 1968 por Ilya Prigogine e seus colaboradores da Universidade Livre de Bruxelas. Desde então tem sido aplicado para analisar reações oscilatórias e autocatalíticas. O método computacional utilizado para implementar o modelo foi o método FTCS (''Forward Time Centered Space'').  
 
O objetivo deste trabalho é implementar o modelo de reação-difusão Brusselator em duas dimensões, frequentemente utilizado para estudar sistemas complexos químicos e biológicos. O modelo é um sistema não linear de equações diferenciais parciais e foi proposto em 1970 por Ilya Prigogine e seus colaboradores da Universidade Livre de Bruxelas. Desde então tem sido aplicado para analisar reações oscilatórias e autocatalíticas. O método computacional utilizado para implementar o modelo foi o método FTCS (''Forward Time Centered Space'').  


==Modelo de Brusselator==  
==Modelo de Brusselator==  


O estudo de sistemas químicos e biológicos frequentemente requer o uso de modelos que caracterizam reações de reação-difusão. Um dos modelos mais utilizados é o modelo de Brusselator, que é utilizado para descrever o mecanismo químico de reação-difusão com oscilações não lineares. [J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973) 3919.] Turing [ref?] observou que quando determinadas reações são associadas a difusão, é possível obter um padrão espacial estável, e isso leva a teoria de morfogênese. Além de processos de reação-difusão, o modelo Brusselator é observado em reações enzimáticas e na física de plasma e de lasers.
O estudo de sistemas químicos e biológicos frequentemente requer o uso de modelos que caracterizam reações de reação-difusão. Um dos modelos mais utilizados é o modelo de Brusselator, que é utilizado para descrever o mecanismo químico de reação-difusão com oscilações não lineares. <ref>J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973) 3919</ref>. Turing observou que quando determinadas reações são associadas a difusão, é possível obter um padrão espacial estável, e isso leva a teoria de morfogênese<ref>Turing A. M., The chemical basis of morphogenesis. 1953. Bull. Math. Biol. 52, 153, discussion 119 (1990).</ref>. Além de processos de reação-difusão, o modelo Brusselator é observado em reações enzimáticas e na física de plasma e de lasers.


O mecanismo de Brusselator proposto por Prigogine (1970) é dado por [I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)]:  
O mecanismo de Brusselator proposto por Prigogine<ref>I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)</ref> é dado por:  


:<math>A \to U</math>        (1.a)
:<math>A \to U</math>        (1.a)
Linha 16: Linha 14:
:<math>U \to E</math> (1.d)
:<math>U \to E</math> (1.d)


Onde U e V são as espécies químicas de interesse. Assumimos A e B em excesso para que o sistema não atinja o equilíbrio.  Esse sistema químico foi importante para o avanço na área de sistemas complexos porque possibilita o uso de modelos matemáticos de duas dimensões, já que U e V são variáveis dependentes, e admite “limit-cycle oscilations”. [ R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971) 267.].
Onde U e V são as espécies químicas de interesse. Assumimos A e B em excesso para que o sistema não atinja o estado de equilíbrio.  Esse sistema químico foi importante para o avanço na área de sistemas complexos porque possibilita o uso de modelos matemáticos de duas dimensões, já que U e V são variáveis dependentes, e admite oscilações de ciclo limite<ref>R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971)</ref>.


As equações diferenciais parciais associadas com o sistema Brusselator são dadas por(G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)):
As equações diferenciais parciais associadas com o sistema Brusselator<ref>G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)</ref> são dadas por:


:<math>\frac{\partial u}{\partial t} = a + u^2v - (b+1)u + D_u \left(\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} \right)</math>
:<math>\frac{\partial u}{\partial t} = a + u^2v - (b+1)u + D_u \left(\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} \right)</math>
:<math>\frac{\partial v}{\partial t} = bu - u^2v + D_v \left(\frac{\partial ^2 v}{\partial x^2} + \frac{\partial ^2 v}{\partial y^2}\right)</math>
:<math>\frac{\partial v}{\partial t} = bu - u^2v + D_v \left(\frac{\partial ^2 v}{\partial x^2} + \frac{\partial ^2 v}{\partial y^2}\right)</math>


onde <math>u(x, y, t)</math> e <math>v(x, y, t)</math> são as concentrações a serem investigadas em função de tempo e espaço, <math>a</math> e <math>b</math> são constantes relativas às concentrações dos reagentes A e B, e <math>D_u</math> e <math>D_v</math> constantes de difusão.
onde <math>u(x, y, t)</math> e <math>v(x, y, t)</math> são as concentrações a serem investigadas em função de tempo e espaço, <math>a</math> e <math>b</math> são constantes relativas às concentrações dos reagentes A e B, e <math>D_u</math> e <math>D_v</math> são as constantes de difusão de U e V.


A solução analítica do sistema reação-difusão Brusselator ainda não é conhecida e por isso há o interesse de explorá-la numericamente.
A solução analítica do sistema reação-difusão Brusselator ainda não é conhecida e por isso há o interesse de explorá-la numericamente.
Linha 31: Linha 29:
===Análise de ponto crítico===
===Análise de ponto crítico===


Considerando o sistema livre de difusão, quando <math>\partial x=\partial y=0</math>:
Considerando o sistema livre de difusão, quando <math>D_u = D_v = 0</math>:
 
:<math> \frac{du}{dt} = f(u, v) = a + u^2v - (b+1)u \qquad t < 0 \quad u(0) = U^0 </math>


:<math> \frac{dv}{dt} = g(u, v) = bu - u^2v \qquad \qquad \qquad \, \, t < 0 \quad v(0) = V^0 </math>
:<math> \frac{du}{dt} = f(u, v) = a + u^2v - (b+1)u </math>


:<math> \frac{dv}{dt} = g(u, v) = bu - u^2v </math>


Onde <math>u = u(t)</math> e <math>v = v(t)</math> e <math>a</math> e <math>b</math> são constantes positivas e reais. A matriz jacobiana <math>J^*</math> no ponto crítico <math>(u^*, v^*)</math> é dada por
Encontramos os pontos críticos do sistema igualando as derivadas à zero. Obtemos que o único ponto crítico é <math>(u^*, v^*) = \left ( a, \frac{b}{a} \right)</math>.
A matriz jacobiana <math>J^*</math> no ponto crítico <math>(u^*, v^*)</math> é dada por


:<math>
:<math>
J^* = \begin{bmatrix}
J^* = \begin{bmatrix}
\frac{\partial f}{\partial u} \Big |_{u^*, v^*} & \frac{\partial f}{\partial v} \Big |_{u^*, v^*} \\
\frac{\partial g}{\partial u} \Big |_{u^*, v^*} & \frac{\partial g}{\partial v} \Big |_{u^*, v^*}
\end{bmatrix}
=
\begin{bmatrix}
b-1 & a^2 \\
b-1 & a^2 \\
-b & -a^2
-b & -a^2
Linha 52: Linha 55:
:<math> \lambda ^2 + (1 - b + a^2)\lambda + a^2 = 0 </math>
:<math> \lambda ^2 + (1 - b + a^2)\lambda + a^2 = 0 </math>


Os autovalores claramente mostram dependência em <math>1-b+a^2</math> e no determinante <math>\Delta = (1-b+ a^2)^2 - 4a^2</math>. Esses autovalores governam a estabilidade do ponto crítico ou determinam a existência de um ciclo limite. As propriedades de estabilidade ou a existência de um ciclo limite estão sumarizadas na tabela abaixo, em relação a figura 1.
Os autovalores claramente mostram dependência em <math>1-b+a^2</math> e no determinante <math>\Delta = (1 - b + a^2)^2 - 4a^2</math>. Esses autovalores governam a estabilidade do ponto crítico e determinam a existência de um ciclo limite. Conforme discutido em Twizell<ref name='t'>Twizell, E. H., Gumel, A. B., & Cao, Q. (1999). Journal of Mathematical Chemistry, 26(4), 297–316 </ref>, quando <math>Re(\lambda) < 0 </math> o sistema é estável e não existe ciclo limite. Já para <math>Re(\lambda) > 0 </math> o sistema é instável e existe ciclo limite.
 
[[Arquivo:]]
 
Utilizando a teoria Hopf, é mostrado que o ponto crítico perde sua estabilidade quando A e B movem da região 2 para região 3, na figura 1, atravessando a curva <math>1-b+a^2 = 0</math>. Uma bifurcação Hopf ocorre quando ao passo que essa curva é atravessada e um ciclo limite estável existe para A e B nas regiões 1 e 2, mas não para A e B nas regiões 3 e 4.
 
Conclui-se que a curva <math>1-b+a^2 = 0</math> governa a estabilidade do sistema.
 


===Análise de ponto fixo===
===Análise de ponto fixo===


O estado estacionário do sistema pode ser encontrado igualando o coeficiente de difusão, e portanto as derivadas parciais, a zero. Percebe-se que esse sistema converge para os pontos fixos:
Ainda em Twizell<ref name='t'>Twizell, E. H., Gumel, A. B., & Cao, Q. (1999). Journal of Mathematical Chemistry, 26(4), 297–316 </ref>, foi feita a análise de ponto fixo. O único ponto fixo encontrado é <math>(u^*, v^*) = \left ( a, \frac{b}{a} \right)</math>. Manipulando a matriz Jacobiana nesse ponto e analisando os autovalores, obtém-se que a solução é atraída para o ponto <math>\left ( a, \frac{b}{a} \right)</math> se <math>1-b+a^2 > 0</math>. Caso contrário, a solução não converge.
 
:<math> u = a </math>
:<math> v = \frac{b}{a} </math>
 
Em [twizell] a manipulação da matriz jacobiana nos pontos fixos resulta nos seguintes autovalores
 
:<math>\mu_1 = \frac{1+ \frac{1}{2} \ell (1-b+a^2) - \frac{1}{4}\ell^2a^2 }{1+ \frac{1}{2} \ell (1-b+a^2) + \frac{1}{4}\ell^2a^2} </math>
 
 
:<math>\mu_2 = \frac{1 - \frac{1}{2} \ell (1-b+a^2) - \frac{1}{4}\ell^2a^2}{1+ \frac{1}{2} \ell (1-b+a^2) + \frac{1}{4}\ell^2a^2} </math>
 
Onde fica claro que os denominadores dos autovalores são sempre positivos quando <math> 1 - b + a^2 > 0</math> and <math> \ell > 0 </math>. As inequações
 
:<math> |\mu_1| < 1 \quad </math> e <math> \quad |\mu_2| < 1 </math>
 
São verdadeiras sempre que <math> 1 - b + a^2 = 0</math>. Portanto, uma condição suficiente para o ponto fixo <math>\left(a, \frac{b}{a}\right)</math> atrair a sequência gerada pelo sistema é <math> 1 - b + a^2 > 0</math>.
 
Ainda em [Twizell] o modelo reação-difusão Brusselator foi discretizado e a análise dos pontos fixos concluiu que o sistema converge para <math>u(x, t) = a</math> e <math> v(x, t)= \frac{b}{a} </math>, sendo esse o único estado estacionário do sistema.
 
Concluiu que também que o sistema apresenta estado oscilatório quando
 
:<math> 1 - b + a < 0 </math>
 
Estado em que o sistema não converge para nenhum ponto.
 


==Método FTCS==
==Método FTCS==
Linha 139: Linha 110:
onde <math>K_u = \frac{D_u \Delta t}{(\Delta s)^2}</math> e <math>K_v = \frac{D_v \Delta t}{(\Delta s)^2}</math>.
onde <math>K_u = \frac{D_u \Delta t}{(\Delta s)^2}</math> e <math>K_v = \frac{D_v \Delta t}{(\Delta s)^2}</math>.


===Análise de estabilidade do método===
===Análise de estabilidade===
 
A análise de estabilidade do método FTCS pode ser feita com a análise local de von Neumann. Para isso precisamos linearizar as equações do modelo Brusselator e escrever as soluções em modos de Fourier, da seguinte forma:
 
:<math>
\delta u_{i, j}^{n+1} = \delta u_{i, j}^n + K_u \left( \delta u_{i+1, j}^n + \delta u_{i-1, j}^n + \delta u_{i, j+1}^n + \delta u_{i, j-1}^n - 4 \delta u_{i, j}^n  \right) + \Delta t f_u \delta u_{i, j}^n + \Delta t f_v \delta v_{i, j}^n
</math>


==Resultados==
:<math>
Esta seção se dedica ao resultados da simulação, utilizando valores de constantes de outros artigos como o [Nome do artigo e referência]. As constantes utilizadas foram identificadas na próxima subseção, com exceção nos gráficos em que indicamos outros valores. As simulações mostram o caráter oscilatório do Brusselator ao longo do tempo e também como se da a reação e difusão em um recipiente em duas dimensões. O código utilizado (incompleto) estará logo após a seção de resultados.
\delta v_{i, j}^{n+1} = \delta v_{i, j}^n + K_v \left( \delta v_{i+1, j}^n + \delta v_{i-1, j}^n + \delta v_{i, j+1}^n + \delta v_{i, j-1}^n - 4 \delta v_{i, j}^n  \right) + \Delta t g_u \delta u_{i, j}^n + \Delta t g_v \delta v_{i, j}^n
===Definindo Constantes===
</math>
 
:<math>
{\delta u^n \choose \delta v^n} = \xi ^n e^{i(k_x i \Delta x + k_y j \Delta y)} {\delta u_0 \choose \delta v_0}
</math>
 
Para que o método seja estável, é preciso que <math>|\xi| < 1</math>. Após inserir as soluções nas equações linearizadas e realizar manipulações algébricas, como feito por Scholz<ref name='s'>Scholz, Christian, Morphology of Experimental and Simulated Turing Patterns, 2009, p. 27-29.</ref>, obtemos
:<math>
\xi_\pm = \frac{1}{2} \left [ \beta \pm \sqrt{\beta ^2 - 4 (\Delta t)^2 a^2 b} \right ]
</math>
onde
:<math>\beta = 2 - 4 \gamma (K_u + K_v) + \Delta t (b - 1 - a^2)</math>
e
:<math>\gamma = sin^2\left( \frac{k_x \Delta s}{2} \right) + sin^2\left( \frac{k_y \Delta s}{2} \right)</math>
 
Os valores <math>\Delta t = 0.01</math> e <math>\Delta s = 1</math> satisfazem a condição de estabilidade, como mostrado em Scholz<ref name='s'>Scholz, Christian, Morphology of Experimental and Simulated Turing Patterns, 2009, p. 27-29.</ref>.
 
===Implementação===
 
A seguir, o trecho do código relativo à implementação do método na linguagem Python. O código completo encontra-se no Github [https://github.com/RicGary/MetCompC/tree/main/Brusselator]
 
<source lang="python">
# u_n, v_n -> concentracao dos reagentes no tempo n (matriz Nx x Ny)
# u_n1, v_n1 -> concentracao dos reagentes no tempo n+1
 
while t < t_max:
 
    for i in range(Nx):
        i_e = (i - 1) % Nx  # vizinho a esquerda de 0 é o da ultima posicao
        i_d = (i + 1) % Nx  # vizinho a direita da ultima posicao é o zero
 
        for j in range(Ny):
            j_e = (j - 1) % Ny
            j_d = (j + 1) % Ny
 
            # calcular u e v no tempo n+1
            u_n1[i, j] = u_n[i, j] + dt * f(u_n[i, j], v_n[i, j], b) \
                        + ku * (u_n[i_e, j] + u_n[i_d, j] + u_n[i, j_e] + u_n[i, j_d] - 4 * u_n[i, j])
            v_n1[i, j] = v_n[i, j] + dt * g(u_n[i, j], v_n[i, j], b) \
                        + kv * (v_n[i_e, j] + v_n[i_d, j] + v_n[i, j_e] + v_n[i, j_d] - 4 * v_n[i, j])
 
    # atualizar u_n e v_n
    for i in range(Nx):
        for j in range(Ny):
            u_n[i, j] = u_n1[i, j]
            v_n[i, j] = v_n1[i, j]


Durante as simulações em 2D foram utilizados no código:
    t += dt
</source>


==Resultados==
Esta seção se dedica ao resultados das simulações realizadas, que mostram o caráter oscilatório do Brusselator ao longo do tempo e também como se dá a difusão dos reagentes em um recipiente em duas dimensões.
As constantes utilizadas foram identificadas abaixo para plotar os gráficos, exceto quando indicado o contrário.


{| class="wikitable" style="text-align:center;"
{| class="wikitable" style="margin-left: auto; margin-right: 0px;" style="text-align:center;"  
|- style="text-align:left;"
|- style="text-align:left;"
! colspan="6" style="text-align:center; font-weight:bold; font-size:medium;" | Tabela de Constantes e Valores
! colspan="6" style="text-align:center; font-weight:bold; font-size:medium;" | Tabela de Constantes e Valores
Linha 157: Linha 183:
|-
|-
| <math>N_x</math>
| <math>N_x</math>
| style="text-align:left;" | Dimensão analisada ao longo do eixo x.
| style="text-align:left;" | Dimensão analisada ao longo do eixo x
| 50
| 50
|-
|-
| <math>N_y</math>
| <math>N_y</math>
| style="text-align:left;" | Dimensão analisada ao longo do eixo y.
| style="text-align:left;" | Dimensão analisada ao longo do eixo y
| 50
| 50
|-
|-
| <math>a</math>
| <math>a</math>
| style="text-align:left;" | Constante relativa à concentração do reagente A.
| style="text-align:left;" | Constante relativa à concentração do reagente A
| 1
| 1
|-
|-
| <math>b</math>
| <math>b</math>
| style="text-align:left;" | Constante relativa à concentração do reagente B.
| style="text-align:left;" | Constante relativa à concentração do reagente B
| 1.7
| 1.7
|-
|-
| <math>D_u</math>
| <math>D_u</math>
| style="text-align:left;" | Constante de difusão do reagente U.
| style="text-align:left;" | Constante de difusão do reagente U
| 0.1
| 0.5
|-
|-
| <math>D_v</math>
| <math>D_v</math>
| style="text-align:left;" | Constante de difusão do reagente V.
| style="text-align:left;" | Constante de difusão do reagente V
| 1
| 1
|-
|-
| <math>u_0</math>
| <math>u_0</math>
| style="text-align:left;" | Concentração de u no tempo inicial (t=0).
| style="text-align:left;" | Concentração de u no tempo inicial (t=0)
| 1
| 1
|-
|-
| <math>v_0</math>
| <math>v_0</math>
| style="text-align:left;" | Concentração de v no tempo inicial (t=0).
| style="text-align:left;" | Concentração de v no tempo inicial (t=0)
| 2
| 1
|-
|-
| <math>dt</math>
| <math>dt</math>
| style="text-align:left;" | Passo de tempo entre iterações.
| style="text-align:left;" | Passo de tempo entre iterações
| 0.1
| 0.01
|-
|-
| <math>ds</math>
| <math>ds</math>
| style="text-align:left;" | Unidade de avanço dos eixos no espaço.
| style="text-align:left;" | Unidade de avanço dos eixos no espaço
| 1
| 1
|-
|-
|}
|}


 
As posições das condições iniciais foram escolhidas arbitrariamente, tendo um total de 6 modos que serão explicados na sequência, sendo eles:
Constantes que dependem diretamente de outros parâmetros não recebem um valor fixo, como é o caso de <math>k_u</math> e <math>k_v</math> que são constantes de estabilidade. Utilizamos estes valores pois foi utilizado no artigos<ref name='simulated-turing-pattern'>Morphology of Experimental and
Simulated Turing Patterns, Christian Scholz, August 2009, Pgs 27-29 </ref>. Já as posições das condições iniciais foram escolhidas arbitrariamente, tendo um total de 6 modos que serão explicados logo à frente, sendo eles:
# Condição em formato do sinal "+".
# Condição em formato do sinal "+".
# Condição de borda.
# Condição de borda.
Linha 208: Linha 232:


===Simulação===
===Simulação===
No gráfico abaixo podemos notar o caráter ondulatório da variação da concentração ao longo do tempo, as linhas (azul e vermelho) significam a taxa de concentração no recipiente.  
Nas figuras abaixo temos a variação das concentrações dos reagentes ao longo do tempo e os diagramas de fase. Para <math>a = 1</math> e <math>b = 1.7</math> notamos que a solução do sistema converge para <math>u(t) = 1</math> e <math>v(t) = 1.7</math>. Esse resultado está de acordo com o esperado, pois o ponto <math>\left(1, 1.7\right)</math> é um ponto fixo atrator (satisfaz que <math>1-b+a^2 > 0</math>), conforme discutido na seção de análise de estabilidade do Brusselator. Notamos também, pelo diagrama de fase, que mesmo alterando as condições iniciais do problema, a solução converge para o estado estacionário.


Note que quando <math>U</math> diminui, <math>V</math> aumenta rapidamente, mantendo-se um ciclo oscilatório em que a amplitude da onda de <math>U</math> e <math>V</math> vão diminuindo ao longo do tempo, como mostrado nas figuras.


[[Arquivo:GrafsPaGreatQuality.jpg|thumb|center|1000px|'''Figura 1''': Gráfico de concentrações.]]
[[Arquivo:Sol_bru_b1.png|thumb|center|790px|'''Figura 1''': Solução do Brusselator para a = 1 e b = 1.7.]]


Pensando no gráfico da reação-difusão como ondas, é correto afirmar que ambas juntas formam um padrão de interferência destrutivo. A animação abaixo mostra exatamente este comportamento, observando o reagente <math>U</math> no gráfico da direita. Note que quando o ponto do gráfico da esquerda chega ao mínimo local, o valor de <math>U</math> é alto e o de <math>V</math> muito baixo, fazendo com que o gráfico da direita fique muito amarelo (amarelo significa uma alta concentração de <math>U</math> sendo formada).


[[Arquivo:GifCertoReuced.gif|thumb|center|1300px|'''Figura 2:''': Comportamento do reagente.]]
Para <math>a = 1</math> e <math>b = 3</math>, temos que <math>1-b+a^2 < 0</math>, portanto a solução do sistema não converge. O que observamos é um comportamento periódico causado pela existência do ciclo limite.


[[Arquivo:Sol_bru_b3.png|thumb|center|790px|'''Figura 2''': Solução do Brusselator para a = 1 e b = 3.]]
Podemos pensar nas funções de concentração <math>u</math> e <math>v</math> como ondas que sofrem interferência destrutiva, pois estão fora de fase. A animação abaixo mostra este comportamento, observe o reagente <math>U</math>, representado pela cor amarela, no gráfico da direita. Note que quando o ponto do gráfico da esquerda chega ao mínimo local, o valor de <math>U</math> é alto e o de <math>V</math> muito baixo, fazendo com que o gráfico da direita fique muito amarelo.
[[Arquivo:AnaliseMid.gif|thumb|center|1300px|'''Figura 3''': Comportamento do reagente.]]
É interessante pensar no gráfico da esquerda como a análise em um ponto específico dentro do recipiente, por exemplo, se <math>Nx=Ny=50</math> estamos analisando o ponto <math>(10,10)</math>. Tendo isso em mente conseguimos analisar os outros 3 cantos da figura, já que, por simetria da posição inicial escolhida, os cantos são iguais.
[[Arquivo:ZoomGraph.jpg|thumb|center|800px|'''Figura 4''': Análise de um ponto.]]


----
----


===Condições Iniciais===
===Condições Iniciais===
Para observar melhor os resultados, foram feitas diversas condições iniciais que foram separadas em tópicos citados em '''Definindo Constantes'''.
Realizamos as simulações variando espacialmente as condições iniciais, para verificar os diferentes padrões formados pelo sistema.
 
Levando em consideração que u_n é um array de tamanho <math>N_x</math> por <math>N_y</math>.


====Condição em Formato do Sinal "+"====  
====Condição em Formato do Sinal "+"====  


O reagente <math>u_0</math> é distribuído no centro formando um sinal de "+".
O reagente <math>u_0</math> é distribuído no centro formando um sinal de "+".
[[Arquivo:CruzBorda.gif|thumb|right|338px|'''Figura 4''': Comportamento em formato de "+" para o reagente u. Para o reagente v foi utilizado a condição de borda.]]


<source lang="python">
<source lang="python">
# u_n [Nx, Ny]


# Centro
# Centro
u_n[int(Nx / 2), int(Ny / 2)] = u0
u_n[int(Nx / 2), int(Ny / 2)] = u0


# Lateral do sinal
# Lateral do sinal
Linha 239: Linha 277:
u_n[int(Nx / 2) + 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) + 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) - 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) - 1, int(Ny / 2)] = u0


# Altura do sinal
# Altura do sinal
Linha 244: Linha 283:
u_n[int(Nx / 2), int(Ny / 2) + 1] = u0
u_n[int(Nx / 2), int(Ny / 2) + 1] = u0
u_n[int(Nx / 2), int(Ny / 2) - 1] = u0
u_n[int(Nx / 2), int(Ny / 2) - 1] = u0


</source>
</source>
----


====Condição de borda====
====Condição de borda====


O reagente <math>v_0</math> foi distribuído nos 4 cantos do recipiente.
O reagente <math>v_0</math> foi distribuído nos 4 cantos do recipiente.
[[Arquivo:CruzBordaB3.gif|thumb|right|338px|'''Figura 5''': Analisando u com condição de borda "+". Para o reagente v foi utilizado a condição de borda. Foi utilizado b=3 para mostrar a diferença na simulação.]]


<source lang="python">
<source lang="python">
# u_n [Nx, Ny]


# Sup Esq
# Sup Esq
v_n[0, 0] = v0
v_n[0, 0] = v0


# Sup Dir
# Sup Dir
v_n[0, Nx - 1] = v0
v_n[0, Nx - 1] = v0


# Inf Esq
# Inf Esq
v_n[Nx - 1, 0] = v0
v_n[Nx - 1, 0] = v0


# Inf Dir
# Inf Dir
v_n[Nx - 1, Nx - 1] = v0
v_n[Nx - 1, Nx - 1] = v0


<\source>
</source>


# Condição aleatória; coloca uma quantia aleatória de pontos em qualquer posição, para <math>u_0</math> e <math>v_0</math>.
----
# Condição de nove pontos centrais; no centro divide 9 pontos com espaçamento de <math>N_x/4</math>, para <math>u_0</math>.
# Condição da borda completa; completa toda a borda do recipiente com reagente <math>v_0</math>.


==Implementação==
====Condição aleatória====


O método foi implementado em Python, considerando <math>\Delta t = 0.1, \Delta s = 1, N_x = N_y = 50</math>, variando as constantes <math>a</math> e <math>b</math> e as condições iniciais do problema.
Os reagentes são aleatoriamente distribuídos ao longo do recipiente, a quantidade de focos de reagente também é aleatória para <math>u_0</math> e <math>v_0</math>.


*'''Código completo no GitHub'''[https://github.com/RicGary/MetCompC/tree/main/Brusselator]
[[Arquivo:AleatorioResize.gif|thumb|right|360px|'''Figura 6''': Posição aleatória.]]


<source lang="python">
<source lang="python">
import numpy as np


# Constantes
from random import *
Nx = Ny = 25
 
a = 1
# u_n [Nx, Ny]
b = 1.7
 
Du = 0.1
aleatorio = randint(int(Nx / 5)
Dv = 1
 
t_max = 40
 
dt = 0.1
# Aleatório para u
ds = 1
for _ in range(aleatorio, Nx)):
    u_n[randint(0, size), randint(0, size)] = u0
 
 
# Aleatório para v
for _ in range(aleatorio, Nx)):
    v_n[randint(0, size), randint(0, size)] = v0
 
</source>


ku = Du * dt / (ds ** 2)
----
kv = Dv * dt / (ds ** 2)


# Valores iniciais
====Condição de nove pontos centrais====
u0 = 1
v0 = 2
t = 0


No centro divide 9 pontos igualmente espaçados de tamanho <math>N_x/4</math>, para <math>u_0</math>. Foi utilizado para <math>u_0</math> na figura 3.


def f(u, v):
[[Arquivo:9PontosBorda.gif|thumb|right|384px|'''Figura 7''': Utilizando a condição de borda para v.]]
    return a - (b + 1) * u + u * u * v


<source lang="python">


# Nove pontos centrais (u0)
mid = int(Nx / 2); mov = int(Nx / 4)


def g(u, v):
# Meio & direita
    return b * u - u * u * v
u_n[mid, mid] = u0
u_n[mid + mov, mid + mov] = u0
# Meio & esquerda
u_n[mid + mov, mid] = u0
u_n[mid, mid + mov] = u0
# Meio, p/baixo & p/lados
u_n[mid + mov, mid - mov] = u0
u_n[mid - mov, mid - mov] = u0
# Meio, p/cima & p/lados
u_n[mid - mov, mid] = u0
u_n[mid, mid - mov] = u0
u_n[mid - mov, mid + mov] = u0


</source>
----
====Condição da borda completa====
Completa toda a borda do recipiente com reagente <math>v_0</math>. Foi utilizado para <math>v_0</math> na figura 3.
[[Arquivo:9PontosB3.gif|thumb|right|359px|'''Figura 8''': Utilizando a condição de borda para v e b=3.]]
<source lang="python">


# vetores no tempo n
# v_n = [Nx, Ny]
u_n = np.zeros((Nx, Ny))
v_n = np.zeros((Nx, Ny))


# vetores no tempo n+1
u_n1 = np.zeros((Nx, Ny))
v_n1 = np.zeros((Nx, Ny))


# Condições iniciais (u e v distribuidos aleatoriamente no espaço
# Toda a borda (v0)
for _ in range(randint(int(Nx / 5), Nx)):
    u_n[randint(0, size), randint(0, size)] = u0
for _ in range(randint(int(Nx / 5), Nx)):
    v_n[randint(0, size), randint(0, size)] = v0


# FTCS
while t < t_max:
    for i in range(Nx):
        i_e = (i - 1) % Nx  # vizinho a esquerda de 0 é o da ultima posicao
        i_d = (i + 1) % Nx  # vizinho a direita da ultima posicao é o zero


        for j in range(Ny):
for i in range(Nx):
            j_e = (j - 1) % Ny
            j_d = (j + 1) % Ny


            u_n1[i, j] = u_n[i, j] + dt * f(u_n[i, j], v_n[i, j]) + ku * (u_n[i_e, j] + u_n[i_d, j] + u_n[i, j_e] + u_n[i, j_d] - 4 * u_n[i, j])
    # Completa primeira coluna e primeira linha
            v_n1[i, j] = v_n[i, j] + dt * g(u_n[i, j], v_n[i, j]) + kv * (v_n[i_e, j] + v_n[i_d, j] + v_n[i, j_e] + v_n[i, j_d] - 4 * v_n[i, j])
    v_n[0, i] = v0
    v_n[i, 0] = v0


     # atualizar u_n e v_n
     # Completa última coluna e última linha
     for i in range(Nx):
     v_n[Nx - 1, i] = v0
        for j in range(Ny):
    v_n[i, Nx - 1] = v0
            u_n[i, j] = u_n1[i, j]
            v_n[i, j] = v_n1[i, j]


    t += dt
   
</source>
</source>



Edição atual tal como às 03h33min de 15 de março de 2022

Grupo: Carolina Lenzi, Eric Naiber e Vitória Xavier

O objetivo deste trabalho é implementar o modelo de reação-difusão Brusselator em duas dimensões, frequentemente utilizado para estudar sistemas complexos químicos e biológicos. O modelo é um sistema não linear de equações diferenciais parciais e foi proposto em 1968 por Ilya Prigogine e seus colaboradores da Universidade Livre de Bruxelas. Desde então tem sido aplicado para analisar reações oscilatórias e autocatalíticas. O método computacional utilizado para implementar o modelo foi o método FTCS (Forward Time Centered Space).

Modelo de Brusselator

O estudo de sistemas químicos e biológicos frequentemente requer o uso de modelos que caracterizam reações de reação-difusão. Um dos modelos mais utilizados é o modelo de Brusselator, que é utilizado para descrever o mecanismo químico de reação-difusão com oscilações não lineares. [1]. Turing observou que quando determinadas reações são associadas a difusão, é possível obter um padrão espacial estável, e isso leva a teoria de morfogênese[2]. Além de processos de reação-difusão, o modelo Brusselator é observado em reações enzimáticas e na física de plasma e de lasers.

O mecanismo de Brusselator proposto por Prigogine[3] é dado por:

(1.a)
(1. b)
(1.c)
(1.d)

Onde U e V são as espécies químicas de interesse. Assumimos A e B em excesso para que o sistema não atinja o estado de equilíbrio. Esse sistema químico foi importante para o avanço na área de sistemas complexos porque possibilita o uso de modelos matemáticos de duas dimensões, já que U e V são variáveis dependentes, e admite oscilações de ciclo limite[4].

As equações diferenciais parciais associadas com o sistema Brusselator[5] são dadas por:

onde e são as concentrações a serem investigadas em função de tempo e espaço, e são constantes relativas às concentrações dos reagentes A e B, e e são as constantes de difusão de U e V.

A solução analítica do sistema reação-difusão Brusselator ainda não é conhecida e por isso há o interesse de explorá-la numericamente.

Análise da estabilidade do sistema

Análise de ponto crítico

Considerando o sistema livre de difusão, quando :

Encontramos os pontos críticos do sistema igualando as derivadas à zero. Obtemos que o único ponto crítico é . A matriz jacobiana no ponto crítico é dada por


Os autovalores de são os valores que satisfazem a equação caracterísitca

Os autovalores claramente mostram dependência em e no determinante . Esses autovalores governam a estabilidade do ponto crítico e determinam a existência de um ciclo limite. Conforme discutido em Twizell[6], quando o sistema é estável e não existe ciclo limite. Já para o sistema é instável e existe ciclo limite.

Análise de ponto fixo

Ainda em Twizell[6], foi feita a análise de ponto fixo. O único ponto fixo encontrado é . Manipulando a matriz Jacobiana nesse ponto e analisando os autovalores, obtém-se que a solução é atraída para o ponto se . Caso contrário, a solução não converge.

Método FTCS

O FTCS (Forward Time Centered Space) é um método de diferença finita que utiliza a derivada à direita ("para frente") no tempo e a derivada segunda centralizada no espaço para discretizar as variáveis. As derivadas no tempo e no espaço bidimensional ficam:


Substituindo nas equações do Brusselator

onde e são as funções que representam a reação sem difusão.


Utilizamos discretização do tipo


Utilizando a notação , assumindo e rearranjando os termos, reescrevemos as equações como


onde e .

Análise de estabilidade

A análise de estabilidade do método FTCS pode ser feita com a análise local de von Neumann. Para isso precisamos linearizar as equações do modelo Brusselator e escrever as soluções em modos de Fourier, da seguinte forma:

Para que o método seja estável, é preciso que . Após inserir as soluções nas equações linearizadas e realizar manipulações algébricas, como feito por Scholz[7], obtemos

onde

e

Os valores e satisfazem a condição de estabilidade, como mostrado em Scholz[7].

Implementação

A seguir, o trecho do código relativo à implementação do método na linguagem Python. O código completo encontra-se no Github [1]

# u_n, v_n -> concentracao dos reagentes no tempo n (matriz Nx x Ny)
# u_n1, v_n1 -> concentracao dos reagentes no tempo n+1

while t < t_max:

    for i in range(Nx):
        i_e = (i - 1) % Nx  # vizinho a esquerda de 0 é o da ultima posicao
        i_d = (i + 1) % Nx  # vizinho a direita da ultima posicao é o zero

        for j in range(Ny):
            j_e = (j - 1) % Ny
            j_d = (j + 1) % Ny

            # calcular u e v no tempo n+1
            u_n1[i, j] = u_n[i, j] + dt * f(u_n[i, j], v_n[i, j], b) \
                         + ku * (u_n[i_e, j] + u_n[i_d, j] + u_n[i, j_e] + u_n[i, j_d] - 4 * u_n[i, j])
            v_n1[i, j] = v_n[i, j] + dt * g(u_n[i, j], v_n[i, j], b) \
                         + kv * (v_n[i_e, j] + v_n[i_d, j] + v_n[i, j_e] + v_n[i, j_d] - 4 * v_n[i, j])

    # atualizar u_n e v_n
    for i in range(Nx):
        for j in range(Ny):
            u_n[i, j] = u_n1[i, j]
            v_n[i, j] = v_n1[i, j]

    t += dt

Resultados

Esta seção se dedica ao resultados das simulações realizadas, que mostram o caráter oscilatório do Brusselator ao longo do tempo e também como se dá a difusão dos reagentes em um recipiente em duas dimensões. As constantes utilizadas foram identificadas abaixo para plotar os gráficos, exceto quando indicado o contrário.

Tabela de Constantes e Valores
Símbolo Nome Valor
Dimensão analisada ao longo do eixo x 50
Dimensão analisada ao longo do eixo y 50
Constante relativa à concentração do reagente A 1
Constante relativa à concentração do reagente B 1.7
Constante de difusão do reagente U 0.5
Constante de difusão do reagente V 1
Concentração de u no tempo inicial (t=0) 1
Concentração de v no tempo inicial (t=0) 1
Passo de tempo entre iterações 0.01
Unidade de avanço dos eixos no espaço 1

As posições das condições iniciais foram escolhidas arbitrariamente, tendo um total de 6 modos que serão explicados na sequência, sendo eles:

  1. Condição em formato do sinal "+".
  2. Condição de borda.
  3. Condição aleatória.
  4. Condição de nove pontos centrais.
  5. Condição da borda completa.

Simulação

Nas figuras abaixo temos a variação das concentrações dos reagentes ao longo do tempo e os diagramas de fase. Para e notamos que a solução do sistema converge para e . Esse resultado está de acordo com o esperado, pois o ponto é um ponto fixo atrator (satisfaz que ), conforme discutido na seção de análise de estabilidade do Brusselator. Notamos também, pelo diagrama de fase, que mesmo alterando as condições iniciais do problema, a solução converge para o estado estacionário.


Figura 1: Solução do Brusselator para a = 1 e b = 1.7.


Para e , temos que , portanto a solução do sistema não converge. O que observamos é um comportamento periódico causado pela existência do ciclo limite.


Figura 2: Solução do Brusselator para a = 1 e b = 3.

Podemos pensar nas funções de concentração e como ondas que sofrem interferência destrutiva, pois estão fora de fase. A animação abaixo mostra este comportamento, observe o reagente , representado pela cor amarela, no gráfico da direita. Note que quando o ponto do gráfico da esquerda chega ao mínimo local, o valor de é alto e o de muito baixo, fazendo com que o gráfico da direita fique muito amarelo.


Figura 3: Comportamento do reagente.


É interessante pensar no gráfico da esquerda como a análise em um ponto específico dentro do recipiente, por exemplo, se estamos analisando o ponto . Tendo isso em mente conseguimos analisar os outros 3 cantos da figura, já que, por simetria da posição inicial escolhida, os cantos são iguais.


Figura 4: Análise de um ponto.

Condições Iniciais

Realizamos as simulações variando espacialmente as condições iniciais, para verificar os diferentes padrões formados pelo sistema.

Condição em Formato do Sinal "+"

O reagente é distribuído no centro formando um sinal de "+".

Figura 4: Comportamento em formato de "+" para o reagente u. Para o reagente v foi utilizado a condição de borda.
# u_n [Nx, Ny]

# Centro
u_n[int(Nx / 2), int(Ny / 2)] = u0


# Lateral do sinal
#       X                   Y
u_n[int(Nx / 2) + 1, int(Ny / 2)] = u0
u_n[int(Nx / 2) - 1, int(Ny / 2)] = u0


# Altura do sinal
#       X                   Y
u_n[int(Nx / 2), int(Ny / 2) + 1] = u0
u_n[int(Nx / 2), int(Ny / 2) - 1] = u0

Condição de borda

O reagente foi distribuído nos 4 cantos do recipiente.

Figura 5: Analisando u com condição de borda "+". Para o reagente v foi utilizado a condição de borda. Foi utilizado b=3 para mostrar a diferença na simulação.
# u_n [Nx, Ny]

# Sup Esq
v_n[0, 0] = v0


# Sup Dir
v_n[0, Nx - 1] = v0


# Inf Esq
v_n[Nx - 1, 0] = v0


# Inf Dir
v_n[Nx - 1, Nx - 1] = v0

Condição aleatória

Os reagentes são aleatoriamente distribuídos ao longo do recipiente, a quantidade de focos de reagente também é aleatória para e .

Figura 6: Posição aleatória.
from random import *

# u_n [Nx, Ny]

aleatorio = randint(int(Nx / 5)


# Aleatório para u
for _ in range(aleatorio, Nx)):
    u_n[randint(0, size), randint(0, size)] = u0


# Aleatório para v
for _ in range(aleatorio, Nx)):
    v_n[randint(0, size), randint(0, size)] = v0

Condição de nove pontos centrais

No centro divide 9 pontos igualmente espaçados de tamanho , para . Foi utilizado para na figura 3.

Figura 7: Utilizando a condição de borda para v.
# Nove pontos centrais (u0)
mid = int(Nx / 2); mov = int(Nx / 4)

# Meio & direita
u_n[mid, mid] = u0
u_n[mid + mov, mid + mov] = u0
# Meio & esquerda
u_n[mid + mov, mid] = u0
u_n[mid, mid + mov] = u0
# Meio, p/baixo & p/lados
u_n[mid + mov, mid - mov] = u0
u_n[mid - mov, mid - mov] = u0
# Meio, p/cima & p/lados
u_n[mid - mov, mid] = u0
u_n[mid, mid - mov] = u0
u_n[mid - mov, mid + mov] = u0

Condição da borda completa

Completa toda a borda do recipiente com reagente . Foi utilizado para na figura 3.

Figura 8: Utilizando a condição de borda para v e b=3.
# v_n = [Nx, Ny]


# Toda a borda (v0)


for i in range(Nx):

    # Completa primeira coluna e primeira linha
    v_n[0, i] = v0
    v_n[i, 0] = v0

    # Completa última coluna e última linha
    v_n[Nx - 1, i] = v0
    v_n[i, Nx - 1] = v0

Referências

  1. J. Tyson, Some further studies of nonlinear oscillations in chemical systems, J. Chem. Phys. 58 (1973) 3919
  2. Turing A. M., The chemical basis of morphogenesis. 1953. Bull. Math. Biol. 52, 153, discussion 119 (1990).
  3. I. Prigogine, R. Lefever, Symmetries breaking instabilities in dissipative systems II. J. Phys. Chem. 48, 1695–1700 (1968)
  4. R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971)
  5. G. Adomian, The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)
  6. 6,0 6,1 Twizell, E. H., Gumel, A. B., & Cao, Q. (1999). Journal of Mathematical Chemistry, 26(4), 297–316
  7. 7,0 7,1 Scholz, Christian, Morphology of Experimental and Simulated Turing Patterns, 2009, p. 27-29.