Modelo de Gray-Scott: mudanças entre as edições
Linha 57: | Linha 57: | ||
\end{align}</math> | \end{align}</math> | ||
=== Estabilidade dos estados estacionários === | === Estabilidade dos estados estacionários (sem difusão) === | ||
Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, <math>R_{i}(u,v)</math>. Explicitamente, analisando o sistema (1) de equações, temos que <math>R_{1}(u,v) = -uv^2 + F(1-u)</math> e <math>R_{2}(u,v) = uv^2 - (F+k)v</math>. A matriz Jacobiana do sistema é então dada por: | Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, <math>R_{i}(u,v)</math>. Explicitamente, analisando o sistema (1) de equações, temos que <math>R_{1}(u,v) = -uv^2 + F(1-u)</math> e <math>R_{2}(u,v) = uv^2 - (F+k)v</math>. A matriz Jacobiana do sistema é então dada por: | ||
Linha 97: | Linha 97: | ||
:<math>\frac{\Delta_{i}}{F(F+k)} = \frac{\sqrt{1-4a^2}}{2a^2} \left(\sqrt{1-4a^2} \mp 1\right)</math> | :<math>\frac{\Delta_{i}}{F(F+k)} = \frac{\sqrt{1-4a^2}}{2a^2} \left(\sqrt{1-4a^2} \mp 1\right)</math> | ||
Para o caso <math>i = 1</math>, a cota superior | :* Para o caso <math>i = 1</math> (sinal negativo), temos a cota superior <math>1-4a^2 < 1</math>. Portanto, <math>\Delta_{1} < 0</math> para todo <math>a</math> que satisfaça a condição de existência. Como o determinante é negativo, sabemos que os autovalores são reais ('''comentário:''' como as entradas da matriz são reais, se os autovalores fossem complexos, seriam também conjugados, de modo que o produto deles fosse igual ao módulo ao quadrado de qualquer um, que seria um valor positivo). Ademais, como seu produto é negativo, eles têm sinais opostos; isto é, um deles é positivo, de modo que o ponto <math>(u^{*}_{1}, v^{*}_{1})</math> '''nunca seja estável'''. Depreendemos desse raciocínio que o determinante da matriz jacobiana de entradas reais ser positivo é uma condição necessária para que haja estabilidade do ponto. | ||
:* Já para <math>i = 2</math> (sinal positivo), temos sempre que <math>\Delta_{2} > 0</math>. Para verificar a estabilidade, temos que agora calcular o traço da matriz jacobiana, pois o traço é a soma dos autovalores: se os autovalores são reais, eles têm o mesmo sinal por seu determinante ser positivo, de modo que o traço compartilhe o sinal com os dois autovalores; se os autovalores <math>\lambda_{i}</math> são complexos, eles serão conjugados e o traço será <math>\operatorname{tr}(J_{R}) = 2 \operatorname{Re}(\lambda_{i})</math>, de modo que a parte real dos autovalores tenha o mesmo sinal do traço. Assim, ''basta que o traço seja negativo para que o ponto seja estável, e que seja positivo para que seja instável''. | |||
::No caso, temos que <math>\operatorname{tr}(J_{R}(u^{*}_{2},v^{*}_{2})) = k - (v^{*}_{2})^2</math>. Esse traço é negativo quando <math>(v^{*}_{2})^2 > k</math>; ou seja, <math>(u^{*}_{2}, v^{*}_{2})</math> é estável quando <math>(v^{*}_{2})^2 > k</math>... | |||
Edição das 20h57min de 24 de fevereiro de 2022
Introdução
Descrição do Modelo
O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como
Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre. Há reposição de a uma taxa (taxa de alimentação, feed rate) e remoção de a uma taxa ligeiramente mais rápida do que a reposição de .
O comportamento geral do sistema pode ser descrito pelas equações abaixo:
Análise de estabilidade
Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.
Soluções estacionárias sem difusão
O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:
Somando essas duas equações, relacionamos as variáveis e :
onde definiu-se o parâmetro auxiliar .
Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:
Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir a expressão acima por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :
Disso, pela relação , temos que os valores correspondentes para são:
É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:
- , para que existam as soluções não-triviais.
Portanto, há três soluções estacionárias do sistema:[1]
Estabilidade dos estados estacionários (sem difusão)
Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, . Explicitamente, analisando o sistema (1) de equações, temos que e . A matriz Jacobiana do sistema é então dada por:
Analisemos a estabilidade para os três pares de soluções estacionárias:
- Para :
- Por essa ser uma matriz diagonal, os autovalores são justamente as entradas das diagonais; ou seja, e . Uma vez que e são parâmetros positivos, os dois autovalores são reais e negativos, e portanto o ponto é sempre estável.
- Para , podemos utilizar uma estratégia que simplifica as contas. Em particular, nota-se que os dois pontos obedecem à segunda equação do sistema (2) com . Desse modo, se dividirmos tal equação por , percebemos que ambos os pontos obedecem a:
- Dessa equação, podemos calcular as entradas da segunda coluna da matriz jacobiana com facilidade:
- Assim, a matriz jacobiana desses pontos fica:
- Sabemos que o produto dos autovalores dessa matriz é igual ao seu determinante. Calculando-o, obtém-se:
- Dividindo por :
- onde se definiu (observação: este é o definido no Gros). Nota-se que a condição de existência para os dois pontos não-triviais é equivalente a . Expandindo os termos, é possível mostrar que a expressão acima pode ser reescrita como:
- Para o caso (sinal negativo), temos a cota superior . Portanto, para todo que satisfaça a condição de existência. Como o determinante é negativo, sabemos que os autovalores são reais (comentário: como as entradas da matriz são reais, se os autovalores fossem complexos, seriam também conjugados, de modo que o produto deles fosse igual ao módulo ao quadrado de qualquer um, que seria um valor positivo). Ademais, como seu produto é negativo, eles têm sinais opostos; isto é, um deles é positivo, de modo que o ponto nunca seja estável. Depreendemos desse raciocínio que o determinante da matriz jacobiana de entradas reais ser positivo é uma condição necessária para que haja estabilidade do ponto.
- Já para (sinal positivo), temos sempre que . Para verificar a estabilidade, temos que agora calcular o traço da matriz jacobiana, pois o traço é a soma dos autovalores: se os autovalores são reais, eles têm o mesmo sinal por seu determinante ser positivo, de modo que o traço compartilhe o sinal com os dois autovalores; se os autovalores são complexos, eles serão conjugados e o traço será , de modo que a parte real dos autovalores tenha o mesmo sinal do traço. Assim, basta que o traço seja negativo para que o ponto seja estável, e que seja positivo para que seja instável.
- No caso, temos que . Esse traço é negativo quando ; ou seja, é estável quando ...
Esse estado de equilíbrio é estável porque a matriz jacobiana possui traço negativo e determinante positivo[2].
Se agora incluímos os termos de difusão e , deve-se levar em consideração a matriz . Aqui, é a matriz jacobiana dos termos de reação, é a matriz diagonal dos termos de difusão e é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência[2]. Aplicando ao modelo de Gray-Scott em :
Para que o estado de equilíbrio seja estável é necessário que o determinante da matriz acima seja positivo e o traço seja negativo. Obtém-se então
Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de , e . Portanto, o estado de equilíbrio permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).
Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)[3].
Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial está presente [1].
Implementação
Será usado o método FTCS (Foward Time Central Space) para integrar as equações do modelo. Como existem explicações do método em toda literatura e em outras entradas da Wiki Título do link, a explicação aqui será sucinta.
O método consiste em discretizar a derivada parcial em relação ao tempo para frente e discretizar as derivadas parciais de segunda ordem em relação ao espaço centralmente. Para uma função :
A partir das duas últimas equações acima é fácil mostrar que o laplaciano em duas dimensões, como será usado no presente trabalho, pode ser escrito como
Fazendo , pode-se simplificar a discretização do laplaciano para
Usando a notação é possível então escrever as equações do modelo de forma discretizada:
Utilizou-se uma rede quadrada de tamanho com condições de contorno periódicas. O estado do inicial do sistema é aquele em que todos os pontos estão no estado de equilíbrio estável trivial , exceto o ponto central, em que é introduzida uma perturbação com , como simulado por Sayama[2].
A formação de padrões no modelo depende fortemente não apenas dos parâmetros e coeficientes de difusão, mas também da resolução, .