Modelo de Gray-Scott: mudanças entre as edições
Linha 61: | Linha 61: | ||
Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, <math>R_{i}(u,v)</math>. Explicitamente, analisando o sistema (1) de equações, temos que <math>R_{1}(u,v) = -uv^2 + F(1-u)</math> e <math>R_{2}(u,v) = uv^2 - (F+k)v</math>. A matriz Jacobiana do sistema é então dada por: | Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, <math>R_{i}(u,v)</math>. Explicitamente, analisando o sistema (1) de equações, temos que <math>R_{1}(u,v) = -uv^2 + F(1-u)</math> e <math>R_{2}(u,v) = uv^2 - (F+k)v</math>. A matriz Jacobiana do sistema é então dada por: | ||
:<math>J_{R}(u,v) = | :<math>J_{R}(u,v) = \begin{bmatrix}\partial_{u} R_{1}& \partial_{v} R_{1}\\ \partial_{u} R_{2}& \partial_{v} R_{2}\end{bmatrix} = \begin{bmatrix} -v^2 -F& -2uv\\ v^2 & 2uv - (F+k)\end{bmatrix}</math> | ||
Analisemos a estabilidade para os três pares <math>(u^{*}_{i},v^{*}_{i})</math> de soluções estacionárias: | |||
* Para <math>(u^{*}_{0},v^{*}_{0}) = (1, 0)</math>: | |||
:<math>J_{R}(u^{*}_{0},v^{*}_{0}) = \begin{bmatrix}-F& 0\\ 0 & -(F+k)\end{bmatrix}</math> | |||
Por essa ser uma matriz diagonal, os autovalores <math>\lambda_{i}</math> são justamente as entradas das diagonais; ou seja, <math>\lambda_{1} = -F</math> e <math>\lambda_{2} = -(F+k)</math>. Uma vez que <math>F</math> e <math>k</math> são parâmetros positivos, os dois autovalores são reais e negativos, e portanto o ponto <math>(u^{*}_{0},v^{*}_{0})</math> é '''sempre estável'''. | |||
* Para <math>(u^{*}_{1},v^{*}_{1}) = \left(\frac{1}{2}(1 + \sqrt{1 - 4\gamma^2 F}), \frac{1}{2\gamma}(1 - \sqrt{1 - 4\gamma^2 F})\right)</math>: | |||
:<math>J_{R}(u^{*}_{1},v^{*}_{1}) = </math> | |||
* Para <math>(u^{*}_{2},v^{*}_{2}) = \left(\frac{1}{2}(1 - \sqrt{1 - 4\gamma^2 F}), \frac{1}{2\gamma}(1 + \sqrt{1 - 4\gamma^2 F})\right)</math>: | |||
:<math>J_{R}(u^{*}_{0},v^{*}_{0}) =</math> | |||
Linha 90: | Linha 105: | ||
Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)<ref name=Biologia>[http://mcb111.org/w13/w13-lecture.html#the-gray-scott-model Week 13, MCB111: Mathematics in Biology (Fall 2021)]</ref>. | Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)<ref name=Biologia>[http://mcb111.org/w13/w13-lecture.html#the-gray-scott-model Week 13, MCB111: Mathematics in Biology (Fall 2021)]</ref>. | ||
Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos '''não''' decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial <math>(u^{*}, v^{*}) = (1, 0)</math> está presente <ref name=Gros/>. | Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos '''não''' decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial <math>(u^{*}, v^{*}) = (1, 0)</math> está presente <ref name=Gros/>. | ||
== Implementação == | == Implementação == |
Edição das 18h13min de 24 de fevereiro de 2022
Introdução
Descrição do Modelo
O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis e , a reação pode ser representada como
Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre. Há reposição de a uma taxa (taxa de alimentação, feed rate) e remoção de a uma taxa ligeiramente mais rápida do que a reposição de .
O comportamento geral do sistema pode ser descrito pelas equações abaixo:
Análise de estabilidade
Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.
Soluções estacionárias sem difusão
O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:
Somando essas duas equações, relacionamos as variáveis e :
onde definiu-se o parâmetro auxiliar .
Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:
Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir a expressão acima por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :
Disso, pela relação , temos que os valores correspondentes para são:
É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:
- , para que existam as soluções não-triviais.
Portanto, há três soluções estacionárias do sistema:[1]
Estabilidade dos estados estacionários
Para avaliar a estabilidade das soluções acima, faz-se necessário obter a matriz Jacobiana dos termos de reação, . Explicitamente, analisando o sistema (1) de equações, temos que e . A matriz Jacobiana do sistema é então dada por:
Analisemos a estabilidade para os três pares de soluções estacionárias:
- Para :
Por essa ser uma matriz diagonal, os autovalores são justamente as entradas das diagonais; ou seja, e . Uma vez que e são parâmetros positivos, os dois autovalores são reais e negativos, e portanto o ponto é sempre estável.
- Para :
- Para :
Esse estado de equilíbrio é estável porque a matriz jacobiana possui traço negativo e determinante positivo[2].
Se agora incluímos os termos de difusão e , deve-se levar em consideração a matriz . Aqui, é a matriz jacobiana dos termos de reação, é a matriz diagonal dos termos de difusão e é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência[2]. Aplicando ao modelo de Gray-Scott em :
Para que o estado de equilíbrio seja estável é necessário que o determinante da matriz acima seja positivo e o traço seja negativo. Obtém-se então
Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de , e . Portanto, o estado de equilíbrio permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).
Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)[3].
Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial está presente [1].
Implementação
Será usado o método FTCS (Foward Time Central Space) para integrar as equações do modelo. Como existem explicações do método em toda literatura e em outras entradas da Wiki Título do link, a explicação aqui será sucinta.
O método consiste em discretizar a derivada parcial em relação ao tempo para frente e discretizar as derivadas parciais de segunda ordem em relação ao espaço centralmente. Para uma função :
A partir das duas últimas equações acima é fácil mostrar que o laplaciano em duas dimensões, como será usado no presente trabalho, pode ser escrito como
Fazendo , pode-se simplificar a discretização do laplaciano para
Usando a notação é possível então escrever as equações do modelo de forma discretizada:
Utilizou-se uma rede quadrada de tamanho com condições de contorno periódicas. O estado do inicial do sistema é aquele em que todos os pontos estão no estado de equilíbrio estável trivial , exceto o ponto central, em que é introduzida uma perturbação com , como simulado por Sayama[2].
A formação de padrões no modelo depende fortemente não apenas dos parâmetros e coeficientes de difusão, mas também da resolução, .