Modelo de Gray-Scott: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 5: Linha 5:
O modelo de Gray-Scott descreve uma reação '''autocatalítica'''. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis <math>u</math> e <math>v</math>, a reação pode ser representada como
O modelo de Gray-Scott descreve uma reação '''autocatalítica'''. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis <math>u</math> e <math>v</math>, a reação pode ser representada como


 
:<math>u + 2v \to 3v</math>
<math>u + 2v \to 3v</math>
 


Isso significa que uma molécula da substância <math>u</math> é transformada em uma molécula da substância <math>v</math> por meio da ação de outras duas moléculas da substância <math>v</math>, ou seja, <math>v</math> é um catalisador de sua própria produção (daí o termo '''autocatálise'''). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos '''reativos-difusivos''') e, portanto, as concentrações <math>u</math> e <math>v</math> mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., <math>3v \to u + 2v</math>) não ocorre. Há reposição de <math>u</math> a uma taxa <math>F</math> (taxa de alimentação, ''feed rate'') e remoção de <math>v</math> a uma taxa ligeiramente mais rápida do que a reposição de <math>u</math>.  
Isso significa que uma molécula da substância <math>u</math> é transformada em uma molécula da substância <math>v</math> por meio da ação de outras duas moléculas da substância <math>v</math>, ou seja, <math>v</math> é um catalisador de sua própria produção (daí o termo '''autocatálise'''). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos '''reativos-difusivos''') e, portanto, as concentrações <math>u</math> e <math>v</math> mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., <math>3v \to u + 2v</math>) não ocorre. Há reposição de <math>u</math> a uma taxa <math>F</math> (taxa de alimentação, ''feed rate'') e remoção de <math>v</math> a uma taxa ligeiramente mais rápida do que a reposição de <math>u</math>.  
Linha 13: Linha 11:
O comportamento geral do sistema pode ser descrito pelas equações abaixo:
O comportamento geral do sistema pode ser descrito pelas equações abaixo:


<math>\frac{\partial{u}}{\partial{t}}= -uv^2 + F(1-u) + D_u\nabla^2u</math>
:<math>\begin{align}
 
\frac{\partial{u}}{\partial{t}} & = - uv^2 + F(1-u) + D_u\nabla^2u\\
<math>\frac{\partial{v}}{\partial{t}}= uv^2 - (F+k)v + D_v\nabla^2v</math>
\frac{\partial{v}}{\partial{t}} & =   uv^2 - (F+k)v + D_v\nabla^2v \quad (1)\\
 
\end{align}</math>


== Análise de estabilidade ==
== Análise de estabilidade ==
Linha 26: Linha 24:
:<math>\begin{align}
:<math>\begin{align}
- & uv^2  + F(1-u) = 0\\
- & uv^2  + F(1-u) = 0\\
   & uv^2  - (F+k)v = 0 \quad (1)\\
   & uv^2  - (F+k)v = 0 \quad (2)\\
\end{align}</math>   
\end{align}</math>   


Linha 35: Linha 33:
onde definiu-se o parâmetro auxiliar <math>\gamma = \frac{F+k}{F}</math>.
onde definiu-se o parâmetro auxiliar <math>\gamma = \frac{F+k}{F}</math>.


Substituindo <math>u</math> na segunda equação do sistema (1) (e reescrevendo <math>F+k =\gamma F</math>), ficamos com:
Substituindo <math>u</math> na segunda equação do sistema (2) (e reescrevendo <math>F+k =\gamma F</math>), ficamos com:


:<math>\left(1 - \gamma v \right)v^2 -\gamma F v = 0 \Rightarrow -\gamma v^3 + v^2 - \gamma F v = 0</math>
:<math>\left(1 - \gamma v \right)v^2 -\gamma F v = 0 \Rightarrow -\gamma v^3 + v^2 - \gamma F v = 0</math>
Linha 51: Linha 49:
:<math>4\gamma^2 F \leq 1 \Rightarrow 4 \left(\frac{F+k}{F}\right)^2 F \leq 1 \Rightarrow F \geq 4(F+k)^2</math>, para que existam as soluções não-triviais.
:<math>4\gamma^2 F \leq 1 \Rightarrow 4 \left(\frac{F+k}{F}\right)^2 F \leq 1 \Rightarrow F \geq 4(F+k)^2</math>, para que existam as soluções não-triviais.


Portanto, há três soluções estacionárias do sistema:
Portanto, há três soluções estacionárias <math>(u^{*}_{i}, v^{*}_{i})</math> do sistema:<ref name=Gros>C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.</ref>


:<math>\begin{align}
:<math>\begin{align}
  & u = 1    & v = 0  \\
  & u^{*}_{0} = 1    & v^{*}_{0} = 0  \\
  & u = \frac{1}{2}(1 + \sqrt{1 - 4\gamma^2 F})  & v = \frac{1}{2\gamma}(1 - \sqrt{1 - 4\gamma^2 F})  \\
  & u^{*}_{1} = \frac{1}{2}(1 + \sqrt{1 - 4\gamma^2 F})  & v^{*}_{1} = \frac{1}{2\gamma}(1 - \sqrt{1 - 4\gamma^2 F})  \\
  & u = \frac{1}{2}(1 - \sqrt{1 - 4\gamma^2 F})  & v = \frac{1}{2\gamma}(1 + \sqrt{1 - 4\gamma^2 F})  \\
  & u^{*}_{2} = \frac{1}{2}(1 - \sqrt{1 - 4\gamma^2 F})  & v^{*}_{2} = \frac{1}{2\gamma}(1 + \sqrt{1 - 4\gamma^2 F})  \\
\end{align}</math>   
\end{align}</math>   


Linha 68: Linha 66:


-----------
-----------
Se agora incluímos os termos de difusão <math>D_{u}</math> e <math>D_{v}</math>, deve-se levar em consideração a matriz <math>\left(J - D \omega^2\right)\Bigg|_{f = f_{eq}}</math>. Aqui, <math>J</math> é a matriz jacobiana dos termos de reação, <math>D</math> é a matriz diagonal dos termos de difusão e <math>\omega</math> é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência<ref name=Sayama260></ref>. Aplicando ao modelo de Gray-Scott em <math>(u^{*}, v^{*}) = (1, 0)</math>:
Se agora incluímos os termos de difusão <math>D_{u}</math> e <math>D_{v}</math>, deve-se levar em consideração a matriz <math>\left(J - D \omega^2\right)\Bigg|_{f = f_{eq}}</math>. Aqui, <math>J</math> é a matriz jacobiana dos termos de reação, <math>D</math> é a matriz diagonal dos termos de difusão e <math>\omega</math> é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência<ref name=Sayama260/>. Aplicando ao modelo de Gray-Scott em <math>(u^{*}, v^{*}) = (1, 0)</math>:




Linha 84: Linha 82:
Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de <math>F, k, D_{u}</math>, e <math>D_{v}</math>. Portanto, o estado de equilíbrio <math>(u^{*}, v^{*}) = (1, 0)</math> permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).
Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de <math>F, k, D_{u}</math>, e <math>D_{v}</math>. Portanto, o estado de equilíbrio <math>(u^{*}, v^{*}) = (1, 0)</math> permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).


Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)<ref name=Biologia>http://mcb111.org/w13/w13-lecture.html#the-gray-scott-model</ref>.  
Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)<ref name=Biologia>[http://mcb111.org/w13/w13-lecture.html#the-gray-scott-model Week 13, MCB111: Mathematics in Biology (Fall 2021)]</ref>.  


Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos '''não''' decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial <math>(u^{*}, v^{*}) = (1, 0)</math> está presente <ref name=Gros>C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.</ref>.  
Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos '''não''' decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial <math>(u^{*}, v^{*}) = (1, 0)</math> está presente <ref name=Gros/>.  




Linha 92: Linha 90:




Há outros dois estados de equilíbrio que são soluções não triviais do sistema de equações (1). Desde que seja obedecida a condição <math>F\geq4(F+k)^2</math>, esses estados são <math>(u_{+},v_{-})</math> e <math>(u_{-},v_{+})</math>, com<ref name=Gros></ref>  
Há outros dois estados de equilíbrio que são soluções não triviais do sistema de equações (1). Desde que seja obedecida a condição <math>F\geq4(F+k)^2</math>, esses estados são <math>(u_{+},v_{-})</math> e <math>(u_{-},v_{+})</math>, com<ref name=Gros/>





Edição das 13h36min de 23 de fevereiro de 2022

Introdução

Descrição do Modelo

O modelo de Gray-Scott descreve uma reação autocatalítica. Sejam duas substâncias químicas cujas concentrações em um dado ponto do espaço são dadas pelas variáveis Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} e , a reação pode ser representada como

Isso significa que uma molécula da substância é transformada em uma molécula da substância por meio da ação de outras duas moléculas da substância , ou seja, é um catalisador de sua própria produção (daí o termo autocatálise). Além dessa reação, ambas substâncias se difundem pelo meio (por isso esse modelo pertence à classe mais geral de modelos reativos-difusivos) e, portanto, as concentrações e mudam com o tempo e diferem em cada ponto. Por simplicidade, assume-se que a reação reversa (i.e., ) não ocorre. Há reposição de a uma taxa (taxa de alimentação, feed rate) e remoção de a uma taxa ligeiramente mais rápida do que a reposição de .

O comportamento geral do sistema pode ser descrito pelas equações abaixo:

Análise de estabilidade

Nota: A análise em toda esta seção pressupõe sempre que os parâmetros e coeficientes de difusão são positivos.

Soluções estacionárias sem difusão

O modelo de Gray-Scott depende dos parâmetros e dos coeficientes de difusão das espécies químicas. Ignorando em um primeiro momento os termos de difusão, percebe-se que, por inspeção, o sistema possui uma solução estacionária em para quaisquer valores dos parâmetros. Esse ponto, no entanto, não é a única solução estacionária do sistema; para encontrar as outras, é necessário impor nas equações do sistema. Fazendo isso e dispensando os termos de difusão (), obtém-se o seguinte sistema de equações:

Somando essas duas equações, relacionamos as variáveis e :

onde definiu-se o parâmetro auxiliar .

Substituindo na segunda equação do sistema (2) (e reescrevendo ), ficamos com:

Evidentemente, é solução dessa equação, implicando em , como já havíamos inspecionado. Alternativamente, considerando , podemos dividir a expressão acima por , ficando com . Resolvendo esta equação quadrática, obtemos duas novas soluções estacionárias para :

Disso, pela relação , temos que os valores correspondentes para são:

É necessário apontar que, para que as duas últimas soluções (não-triviais) existam — isto é, sejam números reais — o fator dentro da raiz quadrada tem de ser positivo ( ). Por consequência:

, para que existam as soluções não-triviais.

Portanto, há três soluções estacionárias do sistema:[1]

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} & u^{*}_{0} = 1 & v^{*}_{0} = 0 \\ & u^{*}_{1} = \frac{1}{2}(1 + \sqrt{1 - 4\gamma^2 F}) & v^{*}_{1} = \frac{1}{2\gamma}(1 - \sqrt{1 - 4\gamma^2 F}) \\ & u^{*}_{2} = \frac{1}{2}(1 - \sqrt{1 - 4\gamma^2 F}) & v^{*}_{2} = \frac{1}{2\gamma}(1 + \sqrt{1 - 4\gamma^2 F}) \\ \end{align}}



Logo, é trivial que o sistema acima é satisfeito quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} . Esse estado de equilíbrio é estável porque a matriz jacobiana Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J|_{(u^*,v^*) = (1,0)} = \left(\begin{array}{cc}-F&0\\0&-F-k\end{array}\right)} possui traço negativo e determinante positivo[2].



Se agora incluímos os termos de difusão Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{u}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{v}} , deve-se levar em consideração a matriz Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(J - D \omega^2\right)\Bigg|_{f = f_{eq}}} . Aqui, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle J} é a matriz jacobiana dos termos de reação, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} é a matriz diagonal dos termos de difusão e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega} é o parâmetro que determina a frequência espacial das perturbações. A demonstração da validade desse método pode ser encontrada na referência[2]. Aplicando ao modelo de Gray-Scott em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} :


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \left(\begin{array}{cc}-F-v^2&-2uv\\v^2&-F-k+2uv\end{array} \right) - \left(\begin{array}{cc}D_u&0\\0&D_v\end{array} \right) \omega^2 \right) \Bigg|_{(u^*,v^*) = (1,0)} = \left(\begin{array}{cc}-F - D_u \omega^2&0\\0&-F -k - D_v \omega^2\end{array} \right) }


Para que o estado de equilíbrio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} seja estável é necessário que o determinante da matriz acima seja positivo e o traço seja negativo. Obtém-se então


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (F+D_{u}\omega^2)(F+k+D_{v}\omega^2) > 0}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2F - (D_{u}+D_{v})\omega^2 - k < 0}


Ambas desigualdades são imediatamente satisfeitas para quaisquer valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F, k, D_{u}} , e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{v}} . Portanto, o estado de equilíbrio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} permanece estável no modelo de Gray-Scott mesmo após a inclusão dos coeficientes de difusão, sejam quais forem os valores desses coeficientes (lembrando que estamos nos restringindo a valores positivos dos parâmetros e coeficientes).

Esse é um resultado à primeira vista surpreendente. Em geral, o surgimento de padrões complexos e não homogêneos em sistemas reativos-difusivos está relacionado à desestabilização de um ou mais estados de equilíbrio homogêneo causada pela introdução dos coeficientes de difusão (conhecida como instabilidade de Turing)[3].

Entretanto, no caso do modelo de Gray-Scott, o surgimento de padrões complexos e não homogêneos não decorre da instabilidade de Turing, uma vez que o surgimento de padrões não triviais nesse modelo ocorre mesmo quando apenas o estado de equilíbrio trivial Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u^{*}, v^{*}) = (1, 0)} está presente [1].


Estados de Equilíbrio Não Triviais

Há outros dois estados de equilíbrio que são soluções não triviais do sistema de equações (1). Desde que seja obedecida a condição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F\geq4(F+k)^2} , esses estados são Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u_{+},v_{-})} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (u_{-},v_{+})} , com[1]


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{\pm} = \frac{1}{2}(1 \pm \sqrt{1 - 4\gamma^2 F})}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v_{\mp} = \frac{1}{2\gamma^2}(1 \mp \sqrt{1 - 4\gamma^2 F})}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = \frac{F + k}{F}}

Referências

  1. 1,0 1,1 1,2 C. Gros, "Complex and Adaptive Dynamical Systems". Springer-Verlag, Berlim, 2015.
  2. 2,0 2,1 H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems". Open SUNY Textbooks, Geneseo, NY, 2015.
  3. Week 13, MCB111: Mathematics in Biology (Fall 2021)