Transições de Fase

De Física Computacional
Edição feita às 19h55min de 30 de novembro de 2021 por Mgteus (Discussão | contribs)

Ir para: navegação, pesquisa

Trabalho desenvolvido no semestre 2021/1 da UFRGS pelos alunos Kevin Pergher, Lucas Colombo e Mateus Guimarães para o curso de Métodos Computacionais da Física C, ministrado pelo professor Heitor C.M Fernandes.

Introdução

Transições de Fase são os pontos onde, por meio de processos físicos, ocorrem mudanças nas características intrínsecas a meios, comumente associadas a pontos que separam fases ordenadas e desordenadas de um sistema, sendo que essas transições são detectadas a partir da medição de observáveis já conhecidos e popularmente chamados de parâmetros de ordem, uma vez que estes observáveis podem estar atrelados a características intrínsecas ao meio em questão. É importante ressaltar que uma transição de fase nem sempre está associada a uma mudança de estado físico, como uma troca do estado líquido para o gasoso, já que a existência de uma transição de fase não exige mudanças macroscópicas, e com isso, pode não envolver mudança de estado físico, mas sim, mudanças no valor atrelado a um observável.


Parâmetros de Ordem

Parâmetro de ordem é o termo dado aos observáveis que possuem natureza atrelada a alguma simetria do sistema, já que devem demonstrar comportamentos variados, para as fases ordenadas e fases desordenadas do sistema; segundo [2] um parâmetro de ordem deve:

i. Preferencialmente, ser diferente de 0 na fase ordenada;
ii. Preferencialmente, ser igual a 0 na fase ordenada.

Os pontos i e ii não são exatamente obrigatórios para um observável ser considerado um parâmetro de ordem, uma vez que faz-se possível a translação da grande maioria de medidas para que o observável cumpra estes “requisitos”. Existem diversos exemplos de parâmetros ordem associados às mais diversas áreas, como por exemplo: em um sistema ferromagnético, a magnetização cumpre o papel de um parâmetro de ordem, já que consegue separar a fase ordenada da fase desordenada do sistema, ou seja, é possível usar a medida de magnetização como parâmetro para definirmos a simetria de um sistema ferromagnético; Em sistemas gás-líquido, temos a diferença de densidade cumprindo o mesmo papel da magnetização anteriormente citada e ainda, para sistemas de cristais líquidos, quem pode definir a simetria de um sistema é o grau da ordem de orientação.






Referências

[1] Challa MS, Landau DP, Binder K. Finite-size effects at temperature-driven first-order transitions. Phys Rev B Condens Matter. 1986 Aug 1;34(3):1841-1852. doi: 10.1103/physrevb.34.1841. PMID: 9939842.

[2] Chen S, Ferrenberg AM, Landau DP. Monte Carlo simulation of phase transitions in a two-dimensional random-bond Potts model. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Aug;52(2):1377-1386. doi: 10.1103/physreve.52.1377. PMID: 9963557

[3] Kumar, Pradeep & Khare, Avinash & Saxena, Avadh. (2011). An Infinite Order Phase Transition.