Mudanças entre as edições de "Simulação de Micélio de Fungo"

De Física Computacional
Ir para: navegação, pesquisa
(Intersecção de linhas)
(Intersecção de linhas)
Linha 147: Linha 147:
 
</ref>
 
</ref>
  
 
+
Trata-se as linhas como uma curva de Bézier de primeiro grau:
 
: <math>
 
: <math>
 
L_1 =  \begin{bmatrix}x_1    \\ y_1\end{bmatrix}
 
L_1 =  \begin{bmatrix}x_1    \\ y_1\end{bmatrix}
Linha 155: Linha 155:
 
     + U_b \begin{bmatrix}x_4-x_3 \\ y_4-y_3\end{bmatrix}
 
     + U_b \begin{bmatrix}x_4-x_3 \\ y_4-y_3\end{bmatrix}
 
</math>
 
</math>
 +
 +
Onde <math>U_a</math> e <math>U_b</math> são números reais definidos como:
  
 
: <math>
 
: <math>
Linha 164: Linha 166:
 
</math>
 
</math>
 
with:
 
with:
 +
 +
E o ponto de intersecção:
 
: <math>
 
: <math>
 
(P_x, P_y)= (x_1 + U_a (x_2-x_1),\; y_1 + U_a (y_2-y_1)) \quad \text{ou} \quad (P_x, P_y) = (x_3 + U_b (x_4-x_3),\; y_3 + U_b (y_4-y_3))
 
(P_x, P_y)= (x_1 + U_a (x_2-x_1),\; y_1 + U_a (y_2-y_1)) \quad \text{ou} \quad (P_x, P_y) = (x_3 + U_b (x_4-x_3),\; y_3 + U_b (y_4-y_3))

Edição das 23h13min de 23 de maio de 2021

Grupo: Arthur Dornelles, Bruno Zanette, Gabriel De David e Guilherme Hoss

O objetivo deste trabalho é modelar computacionalmente o desenvolvimento de micélios em fungos com base em mecanismos gerais pré-estabelecidos. O progresso e a complexidade dos modelos cresceram de maneira gradual ao longo do trabalho através de três modelos de crescimento diferentes. O trabalho foi inspirado - principalmente - nos dois primeiros capítulos do artigo de Steven Hopkins [1].

Motivação e Introdução aos Fungos

Figura 1: Representação computacional de um micélio fungoso.
Figura 2: Processos de ramificação de fungos. À esquerda a ramificação dicotômica (Dichotomous) e à direita o processo de ramificação lateral [1].

Fungos estão integrados em grande parte dos ecossistemas do planeta e cumprem importantes funções na manutenção e sobrevivência dos mesmos. De maneira geral, eles produzem enzimas que são responsáveis pela decomposição de matéria orgânica e - portanto - a reciclagem de diversos nutrientes do ambiente ao seu redor [2]. Em muitos casos, fungos formam fusões simbióticas com plantas ou algas e interagem de diferentes maneiras com diferentes organismos vivos. Neste trabalho, todavia, não faremos a análise dessas interações e focaremos no comportamento individual de crescimento de fungos.

Anatomicamente, fungos são compostos por células que se assemelham a tubos microscópicos, denominadas de hifas. Essas hifas então se ramificam e se fundem umas com as outras em um processo chamado de anastomose, formando uma complexa rede chamada de micélio (figura 1).

A criação de novas hifas, em geral, ocorre ao longo do tempo através de dois processos principais: o primeiro, denominado de ramificação dicotômica, consiste na ponta de uma hifa já existente se dividindo ao meio. O segundo processo é chamado de ramificação lateral, no qual, como o nome sugere, formam-se novos ramos e hifas na lateral de uma hifa já existente, como pode ser visto na figura 2.

Tendo em vista o objetivo deste trabalho, é importante também entender o porquê e quando as ramificações citadas acimas ocorrem, para que possamos programá-las em nosso modelo computacional. A ramificação, portanto, é atribuída ao acúmulo de partículas de nutrientes e materiais no ambiente, o que estimula a extensão das hifas dos fungos em sua direção. Dessa maneira, o crescimento e desenvolvimento dos fungos são altamente dependentes e influenciados pela disponibilidade de nutrientes e materiais no ambiente ao seu redor. Apesar desse fato, fungos podem continuar se desenvolvendo até em ambientes com poucos nutrientes, devido ao processo de translocação, no qual os nutrientes previamente absorvidos pelo fungo podem ser transportados internamente, bancando o crescimento do mesmo em locais com deficiência de nutrientes [1].

Mecanismos Gerais dos Modelos

Devido à grande complexidade e exigência computacional, algumas características típicas do desenvolvimento de fungos citadas na primeira seção foram deixadas de lado durante a construção de nosso modelo computacional. No entanto, os mecanismos essenciais para o bom funcionamento da simulação foram mantidos e serão abordados mais profundamente nessa seção.

Crescimento

Figura 3: O processo de anastomose pode ocorrer de duas maneiras distintas. À esquerda, anastomose de duas pontas separadas (Tip to Tip Anastomosis). À direita, a anastomose de uma ponta com uma hifa (Tip to Hypha Anastomosis) [1].

Fungos possuem - nas pontas de suas hifas - uma estrutura chamada de Spitzenkörper (corpo superior em alemão). Essa estrutura possui a função de orientar a hifa em seu crescimento e de transformar todo o material de crescimento (nutriente) encontrado em material para as paredes de seus tubos, o que leva à expansão de tamanho do fungo [3]. Por isso, tipicamente, as hifas dos fungos crescem de maneira apical (em suas pontas) e em linha reta, possuindo baixa variação em sua orientação e, quando há variação, as mudanças no ângulo de crescimento ocorrem devido a uma deslocação do Spitzenkörper. Estudos anteriores demonstram que essas variações na angulação são - para certas espécies - normalmente distribuídas [4]. A espécie Mucor hiemalis, por exemplo, possui uma angulação média de 56° e desvio padrão de 17° [5].

Divisão e anastomose

Os dois tipos de divisões - ou ramificações - citadas anteriormente na seção introdutória variam entre as diferentes espécies de fungo e - da mesma maneira que o crescimento por expansão das hifas - são altamente dependentes da alta concentração de nutrientes em seu ambiente. Além disso, a absorção de novos nutrientes através do Spitzenkörper resulta em uma pressão de Turgor (ou pressão hidrostática) nas paredes internas do fungo, o que também influencia diretamente no processo de ramificação das hifas [1]. Conforme o crescimento do fungo ocorre e suas ramificações acontecem, o processo de encontro e fusão das pontas das hifas dos fungos citado na primeira seção (anastomose) começa a ocorrer. Este processo também pode ocorrer de diferentes maneiras, como pode ser visto na figura 3. Após a ocorrência de ambos os processos, as hifas - agora juntas umas das outras - passam a permitir a transmissão de substâncias internamente entre si.

Construção do modelo computacional

Branching na ponta / Computar só os da ponta / Crescimento ocorre só com o nutriente que o ponto final está

Utilizando as informações biológicas apresentadas nas seções anteriores, é possível criar funções matemáticas e computacionais para a programação dos três aspectos fundamentais de uma simulação de micélio de fungos:

Ramificação nas pontas

Extensão/Crescimento

Mapa de Nutrientes

Anastomose

Implementação

  • Funções:


O Crescimento e divisão dependem do ângulo do segmento originário, uma forma de consegui-lo é através da equação:

É importante lembrar que para x negativos deve-se somar . Esse cálculo, nas duas funções, implementa-se assim:

x = x2 - x1
y = y2 - y1
 
theta= np.arctan(y/x)
  
if (x<0) :
  theta= theta+ math.pi
  
aleatorio_theta = random.normalvariate(0, math.pi/4) # angulo de 
  
theta=theta+aleatorio_theta

Crescimento

Soma-se este ângulo com um número aleatório normalmente distribuído com média zero e sigma dependente de dados estatísticos advindos da observação do fungo que pretende-se modelar. Agora com o ângulo modificado podemos adquirir um x e y final para o novo segmento com e respectivamente, onde r é uma variável global que representa o tamanho de cada hifa.

def crecimento (x1,y1,x2,y2):
  x = x2 - x1
  y = y2 - y1
 
  theta= np.arctan(y/x)

  
  if (x<0) :
    theta= theta+ math.pi
  
  aleatorio_theta = random.normalvariate(0, math.pi/4) # angulo de 
  
  theta=theta+aleatorio_theta

  addx = r * math.cos(theta)
  addy = r * math.sin(theta)
  

  fx = x2 + addx
  fy = y2 + addy 


  return (fx,fy)

Divisão

A divisão trabalha com uma ideia similar ao crescimento, porém o ângulo aleatório normalmente distribuído é o ângulo que separa as duas hifas criadas

def divisao (x1,y1,x2,y2):
  x = x2 - x1
  y = y2 - y1
  
  theta= np.arctan(y/x)

  if (x<0) :
    theta= theta + math.pi

  angulodivisao= random.normalvariate(0, math.pi/4) 

  angulo1= theta- angulodivisao/2
  angulo2= theta+ angulodivisao/2

  addx1 = r * math.cos(angulo1) 
  addy1 = r * math.sin(angulo1) 

  addx2= r * math.cos(angulo2) 
  addy2= r * math.sin(angulo2) 
  
  Ax = x2 + addx1
  Ay = y2 + addy1
  
  Bx = x2 + addx2
  By= y2 +addy2

  return (Ax,Ay,Bx,By)

Intersecção de linhas

A cada novo crescimento ou divisão, devemos verificar se há cruzamento entre algumas das linhas. Uma forma de tornar o código mais eficiente seria um algorítimo de detecção de cruzamentos que desconsiderasse alguns segmentos que estão muito longe na hora de calcular.

A interseção de duas linhas e pode ser definida utilizando determinantes dados dois pontos em cada linha. Portanto, podemos descobrir se a linha definida por dois pontos distintos e , e a linha definida por dois pontos distintos e se intersectam calculando as seguintes equações matriciais:[6]

Trata-se as linhas como uma curva de Bézier de primeiro grau:

Onde e são números reais definidos como:

and

with:

E o ponto de intersecção:

O ponto de interseção cai dentro do segmento da primeira linha se , e cai dentro do segmento da segunda linha se . [7]

def check_anastomose(eventos,xf,yf,xi,yi):
  flag = True
  for evento in eventos:
    if (xi == evento[2] and yi == evento[3]):
      continue
    if (xi == evento[0] and yi == evento[1]):
      continue
    D = (evento[3]-evento[1])*(xf-xi) - (evento[2]-evento[0])*(yf-yi)
    uA = ((evento[2]-evento[0])*(yi-evento[1]) - (evento[3]-evento[1])*(xi-evento[0]))/D
    uB = ((xf-xi)*(yi-evento[1])-(yf-yi)*(xi-evento[0]))/D
    flag = True
    if (0<=uA<=1) and (0<=uB<=1):
      flag = False
    if not flag:
      xf, yf = get_intersection_point(uA,xf,yf,xi,yi)
      break
  return xf,yf, flag

Os primeiros dois ifs identifica se a hifa a qual essa foi originada é quem está sendo calculada. Se não há cruzamento temos que flag = False, o que significa que a hifa pode continuar crescendo, caso haja ponto de intersecção é chamada a get_intersection_point para encontrar o ponto:

def get_intersection_point(uA,xf,yf,xi,yi):
  xf = xi + (uA * (xf-xi))
  yf = yi + (uA * (yf-yi))
  return xf,yf

Mapa de Nutriente

def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return array[idx]


def check_nutri(x,y,xmapa,ymapa,mapa_nutri):
  
  near_x = find_nearest(xmapa,x) ## encontra valor mais próximo em x
  near_y = find_nearest(ymapa,y) ## encontra valor mais próximo em y

  index_x = np.where(xmapa == near_x) ## encontra o index do valor de x
  index_y = np.where(ymapa == near_y) ## encontra o index do valor de y

  return (mapa_nutri[index_y[0][0]][index_x[0][0]])
def atualiza_mapa_nutri(x,y,xmapa,ymapa,mapa_nutri,preco):

  near_x = find_nearest(xmapa,x) ## encontra valor mais próximo em x
  near_y = find_nearest(ymapa,y) ## encontra valor mais próximo em y

  index_x = np.where(xmapa == near_x) ## encontra o index do valor de x
  index_y = np.where(ymapa == near_y) ## encontra o index do valor de y
  
  mapa_nutri[index_y[0][0]][index_x[0][0]] -= preco

  return (mapa_nutri)

Referências

  1. 1,0 1,1 1,2 1,3 1,4 S. Hopkins. A Hybrid Mathematical Model of Fungal Mycelia: Tropisms, Polarised Growth and Application to Colony Competition, tese de doutorado, 2011.(https://core.ac.uk/download/pdf/6117416.pdf)
  2. P. da Silva. Reino Fungi. InfoEscola (2018). Disponível em: https://www.infoescola.com/biologia/reino-fungi. Acesso em: 15 de Maio de 2021.
  3. G. Steinberg (2007). "Hyphal growth: a tale of motors, lipids, and the Spitzenkörper". Eukaryotic Cell. 6 (3): 351–360. doi:10.1128/EC.00381-06
  4. Molin, P., P. Gervais, J. Lemiere, and T. Davet (1992). Direction of hyphal growth: a relevant parameter in the development of filamentous fungi. Research in Microbiology 143, 777–784. doi: 10.1016/0923-2508(92)90106-x.
  5. Hutchinson, S. A., P. Sharma, K. R. Clarke, and I. Macdonald (1980). Control of hyphal orientation in colonies of Mucor hiemalis. Transactions of the British Mycological Society 75, 177–191. doi: 10.1016/S0007-1536(80)80078-7
  6. Weisstein, Eric W. "Line-Line Intersection." From MathWorld Disponível em: http://mathworld.wolfram.com/Line-LineIntersection.html
  7. Line to line intersection. Wikipedia, the free encyclopedia. Disponível em: https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection. Acesso em: 20 de Maio de 2021.