Modelo de Turing: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 158: Linha 158:




[[Arquivo:u2.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>u</math>.]]
{| class="wikitable" style="text-align: center;"
[[Arquivo:v2.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>v</math>.]]
!colspan="2"|Simulação do Modelo de Turing para <math>(a, b, c, d) = (0.5, -1, 0.75, -1;)</math> e <math>(D_u, D_v) = (0.0001 , 0.001)</math>
|-
|[[Arquivo:u2.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>u</math>.|380px]]
|[[Arquivo:v2.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>v</math>.|380px]]
|-
|}
 


Quanto mais amarelo maior a densidade, assim como quanto mais roxo menor a densidade. Outra simulação das concentrações de <math>u</math> e de <math>v</math> na rede <math>100 \times  100</math>. Agora <math>(a, b, c, d) = (1, -1, 2, -1.5)</math> e <math>(D_u, D_v) = (0.0001, 0.0006)</math>, que também respeita a desigualdade necessária para formar os padrões.
Quanto mais amarelo maior a densidade, assim como quanto mais roxo menor a densidade. Outra simulação das concentrações de <math>u</math> e de <math>v</math> na rede <math>100 \times  100</math>. Agora <math>(a, b, c, d) = (1, -1, 2, -1.5)</math> e <math>(D_u, D_v) = (0.0001, 0.0006)</math>, que também respeita a desigualdade necessária para formar os padrões.




[[Arquivo:uuuu1.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>u</math>.]]
{| class="wikitable" style="text-align: center;"
[[Arquivo:vvvv2.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>v</math>.]]
!colspan="2"|Simulação do Modelo de Turing para <math>(a, b, c, d) = (1, -1, 2, -1.5)</math> e <math>(D_u, D_v) = (0.0001, 0.0006)</math>
|-
|[[Arquivo:uuuu1.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>u</math>.|380px]]
|[[Arquivo:vvvv2.gif|thumb|upright=4|none|alt=Alt text|Simulação do Modelo de Turing da concentração de <math>v</math>.|380px]]
|-
|}




Linha 178: Linha 189:




Aplicando isso para <math>(a, b, c, d) = (1, -1, 2, -1.5)</math> chegaremos a  
Por exemplo, aplicando isso para um conjunto de constantes que simulamos <math>(a, b, c, d) = (1, -1, 2, -1.5)</math> chegaremos a  




Linha 186: Linha 197:




Isso significa que a difusão de <math>v</math> deve ser cinco vezes maior que a difusão de <math>u</math> para  gerar os padrões. A difusão de <math>u</math> age mais localmente enquanto a de <math>v</math> age em áreas maiores. Uma transição de fase é observada perto de <math>\rho = 4.5</math>. Essa transição de fase e formação de padrões é chamada de Bifurcação de Turing <ref name=tur_paper> A. M. Turing, “The chemical basis of morphogenesis,”Philosophical Transactions ofthe Royal Society of London. Series B, Biological Sciences, vol. 237, no. 641, pp.37–72, 1952</ref>.
Isso significa que a difusão de <math>v</math> deve ser cinco vezes maior que a difusão de <math>u</math> para  gerar os padrões. A difusão de <math>u</math> age mais localmente enquanto a de <math>v</math> age em áreas maiores. Uma transição de fase é observada perto de <math>\rho = 4.5</math>. Essa transição de fase entre homogenização e formação de padrões é chamada de Bifurcação de Turing <ref name=tur_paper> A. M. Turing, “The chemical basis of morphogenesis,”Philosophical Transactions ofthe Royal Society of London. Series B, Biological Sciences, vol. 237, no. 641, pp.37–72, 1952</ref>.


== Programas Utilizados ==
== Programas Utilizados ==

Edição das 16h12min de 24 de novembro de 2020

EM CONSTRUÇÃO

Equações de Turing

Simulações computacionais que envolvem equações diferenciais parciais (EDP's) são usualmente modeladas através da discretização das variáveis espaciais e temporais. Algumas dessas equações descrevem comportamentos difusivos no sistema, sendo chamadas de equações de difusão. Tais equações envolvem variáveis de estado que apresentam variações temporal e espacial e coeficientes de difusão no sistema, além de outros parâmetros que influenciam na evolução dos estados. Dentro desse ramo de equações, encontra-se o Modelo de Turing, desenvolvido por Alan Turing, que utiliza como base a concentração de espécies em um sistema, avaliando sua reação, difusão e variação espacial e temporal. São muitas as aplicações do modelo, principalmente em ramos como biologia e química, envolvendo problemas com formação de padrões[1]. A seguir, descrevemos sua formulação matemática.

Sejam e as concentrações das espécies que serão analisadas. Sejam e parâmetros e e constantes. Os coeficientes de difusão são e , cada um associado a uma das concentrações[2]. O Modelo de Turing é dado pelas EDP's



Note que certa parte de cada equação depende apenas dos parâmetros e das concentrações. Podemos, portanto, utilizar funções de variáveis e para descrever o sistema[3], de modo que


Estabilidade e Instabilidade no Modelo de Turing

Pontos de Equilíbrio

Vimos que o modelo de Turing depende de parâmetros , de constantes e e dos coeficientes de difusão.

Afirmação: Se , temos ( como o único ponto de equilíbrio.

Demonstração: Mostraremos que é ponto de equilíbrio. De fato, ao aplicarmos esse ponto na equação do modelo de Turing, temos



para mostrar que é único, suponha que existem dois pontos de equilíbrio, a saber, e . Vemos que, como as equações diferenciais em cada ponto fixo são iguais a zero, temos




Consequentemente, devemos ter


.


Do mesmo modo, . Portanto, o ponto de equilíbrio é único nessas circunstâncias.

Estabilidade de Sistemas Reativos-Difusivos

Para estudarmos a estabilidade dos sistemas reativos-difusivos precisamos encontrar os autovalores da matriz[2]



Onde é a matriz jacobiana dos termos de reação, é a matriz diagonal dos termos de difusão e é o parâmetro que determina a frequência espacial das perturbações. A prova dessa afirmação pode ser encontrada nas referências. Aplicando isso ao modelo de Turing obtemos



Para esta matriz ser estável precisamos que o determinante dessa matriz seja positivo e o traço seja negativo. Obtemos então




Podemos ver que em ambas desigualdades aparecerá o Determinante e o Traço da matriz dos coeficientes de reação. Reescrevendo então obtemos



Se o sistema fosse originalmente estável, isto é, e a segunda desigualdade é sempre verdade, mas a primeira não. Podemos ver que a desigualdade pode ser violada se



tomar valores positivos para algum (Onde ). Podemos reescrever da forma



Vamos então analisar duas opções onde podemos ter : (1) o ponto mais alto da função fica no lado positivo do eixo ou (2) o ponto mais alto da função fica no no lado negativo do eixo . Na primeira opção (1) a única condição é que o máximo da função seja acima do eixo , logo teremos



Se o máximo da função estiver no lado negativo de , opção (2), a condição é que o ponto que interceptar deve ser positivo, podemos escrever isso da forma



Podemos ver que a opção (2) nunca pode ser obtida, pois o modelo é inicialmente estável e , assim a única opção para que a difusão desestabilize o sistema é quando



e com essa desigualdade é fácil checar quais valores dos parâmetros , , e e dos coeficientes de difusão e formarão padrões de Turing.

Implementação

Para resolver numericamente as equações de Turing iremos utilizar o método FTCS (Forward Time Central Space). O método FTCS é o mais simples e consiste em discretizar a derivada em de forma não simetrizada. Obtemos as seguintes discretizações para uma função genérica




Onde é o vetor posição, que neste trabalho utilizamos apenas duas dimensões, .

Podemos discretizar as equações de Turing diretamente com o método FTCS. Talvez o único problema seja o laplaciano, porém basta escrever da forma



Assim podemos utilizar a discretização simetrizada e obter



Ao tomarmos , que faremos aqui, podemos simplificar a discretização do laplaciano para


Então obtemos que as equações de Turing discretizadas pelo método FTCS, em notação discreta, são dadas por



Onde e são os índices espaciais e é o índice temporal.

Utilizamos uma rede quadrada de tamanho com condições de contorno periódicas. O sistema inicia próximo do equilibrio e então é aplicado um pequeno ruído para começar a difusão. O ruído é muito importante, sem ele o sistema ficaria sempre no equilíbrio. O ruído também deve ser pequeno suficiente para quebrar o estado inicial, mas não grande suficiente para causar instabilidades numéricas na simulação. O ruído utilizado aqui consiste em números aleatórios no intervalo . Tomamos .

Resultados e Discussão

Abaixo podemos visualizar uma simulação das concentrações de e de na rede com e , que respeita a desigualdade necessária para formar os padrões.


Simulação do Modelo de Turing para e
Alt text
Simulação do Modelo de Turing da concentração de .
Alt text
Simulação do Modelo de Turing da concentração de .


Quanto mais amarelo maior a densidade, assim como quanto mais roxo menor a densidade. Outra simulação das concentrações de e de na rede . Agora e , que também respeita a desigualdade necessária para formar os padrões.


Simulação do Modelo de Turing para e
Alt text
Simulação do Modelo de Turing da concentração de .
Alt text
Simulação do Modelo de Turing da concentração de .


É possível ver que o sistema rapidamente forma um padrão, onde existem algum aglomerados com maior densidade e diversos pontos onde existe baixa densidade. Diferentes conjuntos das constantes e dos coeficientes de difusão formam diferentes padrões.

Podemos estudar também a estudar a razão crítica dos coeficientes de difusão, onde o sistema passa a formar padrões. Definindo um novo parâmetro podemos rearranjar a desigualdade necessária para formar padrões da forma



Por exemplo, aplicando isso para um conjunto de constantes que simulamos chegaremos a



Isso significa que a difusão de deve ser cinco vezes maior que a difusão de para gerar os padrões. A difusão de age mais localmente enquanto a de age em áreas maiores. Uma transição de fase é observada perto de . Essa transição de fase entre homogenização e formação de padrões é chamada de Bifurcação de Turing [4].

Programas Utilizados

Programas na linguagem C. Para utilizar os programas, abra o terminal e compile da forma

$ gcc prog.c -lm

Onde prog.c é o programa que deseja utilizar. E execute da seguinte maneira

$ ./a.out PARAMETROS

onde o segundo termo são os parâmetros do sistema, argumento dos programas. Dentro dos programas tem um exemplo de execução. O programa da simulação possuei uma diretiva de compilação para visualização do sistema ao decorrer da execução. Para utilizar é necessário ter o gnuplot [5] instalado e compilar da forma

$ gcc -DGNU prog.c -lm

e então executar da maneira

$ ./a.out PARAMETROS | gnuplot

Estabilidade das Constantes

Simulação do Modelo de Turing

Referências

  1. https://en.wikipedia.org/wiki/Turing_pattern
  2. 2,0 2,1 H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 260. Open SUNY Textbooks, Geneseo, NY, 2015. Erro de citação: Etiqueta inválida <ref>; Nome "Sayama260" definido várias vezes com conteúdo diferente
  3. J. Jost, "Partial Differential Equations", 3ed, p.140. Springer Science+Business Media, New York, 2013.
  4. A. M. Turing, “The chemical basis of morphogenesis,”Philosophical Transactions ofthe Royal Society of London. Series B, Biological Sciences, vol. 237, no. 641, pp.37–72, 1952
  5. https://fiscomp.if.ufrgs.br/index.php/Gnuplot