Modelo de Fitzhugh-Nagumo para o potencial de ação de neurônios: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 28: Linha 28:
==Modelo==
==Modelo==
===Premissa do modelo===
===Premissa do modelo===
Para iniciar a modelagem do sistema, devemos antes enfatizar três condições básicas que o potencial deve obedecer para que seja um PA <ref name=VIDEO> https://www.youtube.com/watch?v=H9yxE9yrH5w&t=288s&ab_channel=DuaneNykamp </ref>:
Para iniciar a modelagem do sistema, devemos antes enfatizar três condições básicas que o potencial deve obedecer para que seja um PA <ref name=VIDEO> https://youtu.be/H9yxE9yrH5w:
*Deve existir um limiar de voltagem para que um estímulo desencadeie o PA;
*Deve existir um limiar de voltagem para que um estímulo desencadeie o PA;
*Uma vez atingido o limiar, a voltagem deve aumentar até o máximo possível;
*Uma vez atingido o limiar, a voltagem deve aumentar até o máximo possível;

Edição das 22h43min de 1 de abril de 2021

Grupo: Bernardo Boatini, Murilo Kessler Azambuja e Natália Ferrazzo

O objetivo deste trabalho é implementar e estudar a dinâmica do modelo FitzHungh-Nagumo, e das equações que o compõem, para potenciais de ação em células e tecidos excitáveis. O método computacional utilizado para resolver os problemas e implementar o modelo foi o FTCS (Forward Time Centered Space) e o método de Crank-Nicolson.

Potencial de Ação em Neurônios

A células vivas são sistemas eletricamente sensíveis, ou seja, podem reagir a estímulos elétricos. Isso se dá devido ao fato de que substâncias carregadas estão naturalmente vinculadas a seus processos internos de interação com o ambiente, principalmente por intermédio de canais iônicos e proteínas transmebrana como, por exemplo, a Bomba de Sódio e Potássio(Bomba Na⁺/K⁺ ATPase)[1].

Naturalmente todas as células vivas possuem um potencial de repouso(PR) elétrico, ou seja, uma diferença de potencial elétrico, em relação ao meio(cerca de 0,1); mantida por um equilíbrio químico de concentração de íons dentro e fora da membrana plasmática.

Existem células que reagem estímulos elétricos apenas reestabelecendo o PR original por transporte passivo(sem gasto de energia) através da membrana, e estas são ditas células não-excitáveis.

Por outro lado, existem células que sob a ação do mesmo estímulo produzem um tipo de resposta bem característica: potencial de ação(PA); um pulso elétrico intenso(capaz de inverter a polarização do Potencial de Membrana) que se propaga ao longo da membrana da célula, sustentado por uma cadeia de transportes ativos(com gasto de energia) e que não decai ao longo do tempo e espaço; a esse tipo de células damos o nome de excitáveis[1].

Os Neurônios são as células excitáveis do tecido nervoso(que constituem o encéfalo e medula espinhal, gânglios e nervos do reino animal) e com já vimos são capazes de gerar PA. Um potencial de ação pode assumir diversos formatos, mas ao longo do axônio(Figura 1) de um neurônio eles tendem a uma curva como a da Figura 2.

Figura 1 -Representação de um potencial de ação(vermelho) ao longo de um axônio de neurônio, partindo do soma neural em direção a arvore dentrítica.
Figura 2 -Curva de um Potencial de Ação genérico no tempo, em um ponto do axônio de um neurônio.

Olhando para Figura 2 vemos alguns aspectos importantes:

  • O potencial de ação necessita de um estímulo mínimo(limiar) para ser ativado, abaixo desse valor o estímulo decai como em uma célula não excitável;
  • Acima desse limiar a célula segue o principio de "Tudo ou Nada", ou seja, assume o valor máximo possivel dentro de sua capacidade, independente do estímulo aplicado;
  • A etapa de despolarização(crescimento) é brusca e varia mais rapidamente que a repolarização(decaimento);
  • O período que contém a repolarização e hiperpolarização da membrana é chamado período refratário, e se caracteriza por não permitir que ocorra nenhum disparo até que a membrana atinja o potencial de repouso.


Modelo

Premissa do modelo

Para iniciar a modelagem do sistema, devemos antes enfatizar três condições básicas que o potencial deve obedecer para que seja um PA Erro de citação: </ref> de fechamento ausente para a marca <ref>

Modelo de Fitzhugh-Nagumo

Método de Crank-Nicolson

(explicar o método --> Natália)

Equação de Nagumo 1D

(aplicar o método na equação e testar estabilidade --> Natália)

Método FTCS

(explicar o método --> Murilo)

Equação de Recuperação 1D

(aplicar o método na equação e testar estabilidade --> Murilo))

Modelo FitzHung-Nagumo 2D

(aplicar o método na equação e testar estabilidade --> Bernardo)

O sistema de EDP's em 2 dimensões, assumindo uma difusão isotrópica, é dado por



Como a equação de recuperação já foi discretizada, e não depende da dimensão do problema, precisamos apenas aplicar o FTCS na equação difusiva de naumo em 2D, assumindo , temos



na qual os índices e se referem às coordenadas e respectivamente; e o índice referente ao tempo.

Vamos verificar as condições de estabilidade do problema por modos de Fourier, ou seja, substituindo

Resultados

Equação de Nagumo 1D

(explicar os testes e os gráficos/animações --> Natália)

Modelo FitzHung-Nagumo 1D

(explicar os testes e os gráficos/animações --> Murilo)

Modelo FitzHung-Nagumo 2D

(explicar os testes e os gráficos/animações --> Bernardo)

Discussão

(Contextualizar resultados --> Bernardo)

Programas

Referências

  1. 1,0 1,1 https://www.ufrgs.br/mnemoforos/arquivos/potenciais2005.pdf Jorge A. Quillfeldt,"ORIGEM DOS POTENCIAIS ELÉTRICOS DAS CÉLULAS NERVOSAS"