Mudanças entre as edições de "Modelo de Bornholdt para simulação de mercados financeiros artificiais"

De Física Computacional
Ir para: navegação, pesquisa
(Volatilidade)
(Volatilidade)
Linha 51: Linha 51:
 
  <math>A(\tau) =\mathcal{F}\{|S(\omega)|^2\}</math>
 
  <math>A(\tau) =\mathcal{F}\{|S(\omega)|^2\}</math>
  
onde <math>S(\omega)</math> é a transformada de Fourier do quadrado dos retorno.
+
onde <math>S(\omega)</math> é a transformada de Fourier do quadrado dos retornos.
  
 
==Simulações==
 
==Simulações==

Edição das 20h59min de 19 de maio de 2021

Grupo: Leonardo Barcelos, Luana Bianchi e Rubens Borrasca

Modelo de Bornholdt

Alguns conceitos importantes

Retornos

Quando se trata de sistemas financeiros, os estudos se concentram mais no retorno dos ativos do que no preço em si, pois a série temporal dos retornos tem propriedades estatísticas mais interessantes que a série dos preços.

Sendo P(t) o preço de um ativo financeiro no instante t, e P(t-1) o preço do ativo no instante (t-1), o retorno linear do ativo é:


Reescrevendo esta equação, obtemos que:


Aplicando a função logarítmica em ambos os lados da equação, e considerando que:


obtêm-se o retorno logarítmico, que é mais indicado quando se têm ativos voláteis, que possuem uma variação muito alta:


Considerando que neste estudo serão comparados retornos de diferentes índices, e também os retornos obtidos através das simulações com o modelo de Bornholdt, é importante normalizar os retornos:


em que é o desvio padrão da serie de retornos e a média.

Distribuição dos Retornos

Quando se tem um volume considerável de dados é possível obter a distribuição probabilística deles. Para isso pode-se utilizar a estimação de densidade de Kernel (KDE). Ao observar uma pequena janela de tamanho h em torno de um ponto em análise, pode-se dizer que:


sendo uma função kernel e uma variável tal que:


Para este estudo utilizou-se um kernel gaussiano:


Este método foi aplicado para as séries de retorno para obter a distribuição deles, utilizando .

Volatilidade

A volatilidade do retorno é o retorno ao quadrado. O interessante a se verificar é se a volatilidade tem memória, e para isso é preciso verificar se a auto correlação delas apresenta a formação de clusters de volatilidade. Para obter a auto correlação o teorema de Wiener-Khinchin foi utilizado, de forma que:


onde é a transformada de Fourier do quadrado dos retornos.

Simulações

Variação do tamanho da grade

Em Julia, 8000 passos de MC 16x16: 0.512 s 32x32: 2.332 s 50x50: 10.674 s 100x100: 154.134 s

Conclusões

Programas