Mudanças entre as edições de "Método de Elementos Finitos"

De Física Computacional
Ir para: navegação, pesquisa
Linha 156: Linha 156:
  
 
:<math>
 
:<math>
\phi_i{(x_j)} = {begin{matrix} 1, \quad \text{se} i=j\\
+
\phi_i{(x_j)} =\left\{\begin{array}{lc} 1, \quad \text{se}\quad i=j\\
0, \quad \text{se} i \ne j \end{matrix} \right.
+
0, \quad \text{se}{i \ne j} \end{matrix} \right.
</math>
+
 
+
:<math>
+
p(x,t=0)=\left\{\begin{array}{lc} 1, \quad \text{p/}\quad x = \mathcal{C}_1, \mathcal{C}_1 \in [0,N]\\
+
0, \quad \text{caso contrario}\end{array}\right.
+
 
</math>
 
</math>
  

Edição das 12h45min de 8 de outubro de 2021

Em construção - as referencias e imagens ainda estão faltando

Grupo: Antônio Carlan, Gabriela Pereira, Renan Soares e Victor Gandara

Objetivo: Apresentar uma introdução do Método de Elementos Finitos, abordando seu funcionamento e demonstrando suas etapas através de um exemplo, demonstrando seu potencial e o que o diferencia de outros métodos estudados nas cadeiras de métodos computacionais até então vistos.

Introdução ao Método de Elementos Finitos(MEF)

Aplicação

Este é um método numérico de resolução aproximada para problemas de valores sobre contorno em equações diferenciais. É largamente utilizado na industrial para o desenvolvimento de novas tecnologias e produtos, pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, através da simulação da física de situações em que se espera que o projeto atue.

[imagem1] Simulação de deformação de um veiculo https://en.wikipedia.org/wiki/Finite_element_method

O que torna este método diferente é a forma com que ele discretiza e faz suas aproximações. Sua discretização é feita na geometria, ou seja, repartindo o objeto em diversos elementos menores. Desta forma é possível que se resolva problemas em geometrias complexas que seriam muito difíceis ou até impraticáveis com outros métodos. Também permite trabalhar com materiais compostos, ou de diferentes densidades em um objeto.

[imagen2] Modelo normal e modelo discretizado e representado por uma malha. [imagem3] Simulação de estresse sofrido no objeto.

O Método

O conceito fundamental do MEF é a aproximação de uma quantidade continua(p. ex., tensão elétrica, temperatura, etc.) através de um modelo discreto composto por um conjunto de funções simples que são definidas em um número finito de subdomínios(elementos)

A resolução de um problema através do MEF envolve quatro etapas principais:

  1. Discretização da região: Transformar o objeto de estudo em vários elementos menores que juntos formam o objeto original de forma aproximada e a isso chama-se Malha.
  2. Aproximação da solução: Obtenção das equações correspondentes de cada elemento, através de interpolação polinomial.
  3. Montagem do sistema global: Juntar os elementos e suas equações em uma matriz que fornecerá a solução global.
  4. Resolução do sistema: Resolver a matriz gerada para obter a solução aproximada do problema.

Discretização: A Malha

A malha define o domínio do problema, ela é a base do método. Porém não é parte do algoritmo em si. Normalmente é criada automaticamente por um programa especifico para isso, como GMSH e NetGen. Apenas sendo fornecida as especificações que se deseja para a malha, vão influenciar na quantidade de nós, na dimensão do domínio e na precisão da aproximação.

Ela é composta por um conjunto de pontos interligados que descrevem o objeto. Estes pontos são chamados de nós e a união destes nós forma um elemento, e a união destes elementos formam o objeto que é nosso domínio.

[imagem nos.png]

  1. Dimensão: A malha pode ser unidimensional, bidimensional ou tridimensional.

[imagem dimensão print slide 5]

  1. Ordem: Quanto maior a ordem da malha mais precisa será a aproximação dos resultados entre os nós, porém aumenta o consumo computacional.

[imagem ordem print slide 5]

  1. Densidade de elementos: Pode-se escolher por gerar uma malha mais ou menos detalhada, isso implica no consumo computacional. Quanto mais detalhada a malha, ou seja, quanto maior o numero de nós da malha, menor será o erro de aproximação do problema real.

[imagem densidade de malhas]

Funcionamento do método

Cada nó desta malha terá atribuída uma variável do problema físico que esta sendo implementado(o valor da grandeza contínua para aquele ponto), como Tensão Elétrica, Dilatação, Temperatura, etc. Esta variável é chamada Valor nodal, ela representa a solução da equação naquele ponto (Variáveis nodais = incógnitas ou graus de liberdade do problema).

[imagem print slide 7]

Já a grandeza contínua é aproximada em cada elemento por um polinômio que é definido usando os valores nodais da grandeza. Ou seja, nós iremos descobrir os valores nodais dos nós e entre eles,os valores da grandeza contínua serão dados por uma aproximação polinomial.

Lembrando que os elementos são formados pelos nós e que os valores nodais estão associado aos nós e não ao elemento diretamente.

Então, cada elemento terá um polinômio que descreve a grandeza contínua na região entre os nós que formam este elemento, no caso de uma matriz com elementos de primeira ordem, será uma reta entre os valores nodais. Os polinômios são escolhidos/deduzidos de forma que a continuidade seja mantida na fronteira entre os elementos, utilizando os métodos matemáticos adequados para isso.

"Este polinômio resulta de um ajuste dos valores nodais para que se tenha uma boa aproximação da grandeza real, este ajuste é feito através da minimização de alguma grandeza associada ao problema."

Interpolação

Os valores nodais, que são nossas incógnitas, precisam ser isolados e deixados em função das coordenadas dos nós, que possuímos através da malha de elementos finitos já gerada.

[imagem gráfico slide 9]

-> valores nodais -> coordenadas dos nós

Aproximação polinomial no caso da malha de primeira ordem:

As variáveis a1 e a2 são coeficientes da interpolação, porém não as temos e não queremos deixa-las no calculo, para isso:

logo:


Portanto:

Substituindo os valores de e na equação de interpolação anterior ficaremos com:

Ou, como é definido a aproximação nodal:

Esta fica conhecida por aproximação nodal pois a grandeza pode ser obtida em qualquer ponto do intervalo a partir dos valores e .

Função Interpolação

Esta aproximação nodal pode ainda ser reescrita como:

Com:

e

sendo

As funções e são conhecidas como funções de interpolação e são responsáveis por fazer com que cada nó do elemento contribua com uma parte do valor resultante em qualquer ponto dentro do elemento.

E devido a propriedade do delta de Kronecker, vista abaixo, é garantido que as equações só terão valor entre os nós dentro do elemento que são definidos:

Falhou ao verificar gramática (Erro de sintaxe):

[imagem gráfico interpolação aula 3 aos 10 min]


Então, por exemplo, nossa equação para o elemento 1, no caso visto aqui de 1D, para um problema de tensão, fica:

Elemento 1:

Com:

e

Fica fácil perceber que os valores nodais dos dois nós se interpolam e contribuem para os valores entre para o resultado.

A notação geral da função interpolação fica:

As funções são diferentes para cada elemento e elas são nulas fora do elemento a que pertencem.

Solução Global

Seguindo com o caso do problema de tensão elétrica, a solução global será dada pelo somatório das funções de interpolação de cada elemento.