Mudanças entre as edições de "Método de Elementos Finitos"

De Física Computacional
Ir para: navegação, pesquisa
Linha 3: Linha 3:
 
'''Grupo: Antônio Carlan, Gabriela Pereira, Renan Soares e Victor Gandara'''
 
'''Grupo: Antônio Carlan, Gabriela Pereira, Renan Soares e Victor Gandara'''
  
'''Objetivo:''' Apresentar uma introdução do Método de Elementos Finitos, abordando seu funcionamento e demonstrando suas etapas através de um exemplo, demonstrando seu potencial o que o diferencia de outros métodos estudados nas cadeiras de métodos computacionais até então vistos.
+
'''Objetivo:''' Apresentar uma introdução do Método de Elementos Finitos, abordando seu funcionamento e demonstrando suas etapas através de um exemplo, demonstrando seu potencial e o que o diferencia de outros métodos estudados nas cadeiras de métodos computacionais até então vistos.
  
 
= Introdução ao Método de Elementos Finitos(MEF) =
 
= Introdução ao Método de Elementos Finitos(MEF) =
  
  
=== Introdução ===
+
=== Aplicação ===
 
   
 
   
Este método numérico de resolução de equações diferenciais é largamente utilizado na industria no desenvolvimento de novas tecnologias e produtos. Pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, simulando situações em que se espera que o projeto atue.
+
Este método numérico de resolução aproximada para problemas de valores sobre contorno equações diferenciais é largamente utilizado na industria para o desenvolvimento de novas tecnologias e produtos. Pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, através da simulação da física de situações em que se espera que o projeto atue.
 +
 
 +
O que torna este método diferente é a forma com que ele discretiza e faz suas aproximações. Sua discretização é feita na geometria, ou seja, repartindo o objeto em diversos elementos menores. É então resolvida as equações para cada elemento e depois o somatório dessas resoluções fornece a solução global do problema. Desta forma é possível que se resolva problemas em geometrias complexas que seriam muito difíceis ou até impraticáveis com outros métodos.

Edição das 13h05min de 6 de outubro de 2021

Em construção

Grupo: Antônio Carlan, Gabriela Pereira, Renan Soares e Victor Gandara

Objetivo: Apresentar uma introdução do Método de Elementos Finitos, abordando seu funcionamento e demonstrando suas etapas através de um exemplo, demonstrando seu potencial e o que o diferencia de outros métodos estudados nas cadeiras de métodos computacionais até então vistos.

Introdução ao Método de Elementos Finitos(MEF)

Aplicação

Este método numérico de resolução aproximada para problemas de valores sobre contorno equações diferenciais é largamente utilizado na industria para o desenvolvimento de novas tecnologias e produtos. Pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, através da simulação da física de situações em que se espera que o projeto atue.

O que torna este método diferente é a forma com que ele discretiza e faz suas aproximações. Sua discretização é feita na geometria, ou seja, repartindo o objeto em diversos elementos menores. É então resolvida as equações para cada elemento e depois o somatório dessas resoluções fornece a solução global do problema. Desta forma é possível que se resolva problemas em geometrias complexas que seriam muito difíceis ou até impraticáveis com outros métodos.