Método Lax-Wendroff

De Física Computacional
Revisão de 18h09min de 4 de fevereiro de 2024 por Lucaso (discussão | contribs) (Criou página com 'Trata-se de um método de segunda ordem tanto no tempo quanto no espaço. Lax e Wendroff propuseram um método de discretização de segunda ordem para resolver equações hiperbólicas, o qual substituiu o método de Lax-Friedrichs. <center><math> u_i^{n+1}= u_{i}^n - \frac{r}{2}(u_{i+1}^n + u_{i-1}^n) + \frac{r^2}{2} (u_{i+1}^n - 2u_{i}^n + u_{i-1}^n) </math></center>(14) = Implementação do método = * Condição inicial: <math>u(x,0) = 1-\cos(x)</math>; * Condi...')
(dif) ← Edição anterior | Revisão atual (dif) | Versão posterior → (dif)
Ir para navegação Ir para pesquisar

Trata-se de um método de segunda ordem tanto no tempo quanto no espaço. Lax e Wendroff propuseram um método de discretização de segunda ordem para resolver equações hiperbólicas, o qual substituiu o método de Lax-Friedrichs.

(14)

Implementação do método

  • Condição inicial: ;
  • Condições de contorno para bordas cíclicas.
# Solução pelo método Lax-Wendroff para equação de advecção

def LaxWad(L, tf, v, Nx, Nt):
    """
    Parâmetros:
    - L: comprimento
    - tf: tempo final
    - v: velocidade de propagação
    - Nx: número de pontos na direção espacial
    - Nt: número de pontos na direção temporal

    Retorna:
    - Matriz com a solução da equação da onda
    """

    dx = L / (Nx - 1)
    dt = tf / (Nt - 1)
    r = v * dt / dx

    u = np.zeros((Nt, Nx+1))

    # Condição inicial: u(x,0) = f(x)
    x = np.linspace(0, L, Nx+1)
    u[0,:] = 1-np.cos(x) # Função que descreve a perturbação da onda

    # Condições de contorno borda infinita:
    xpos = np.zeros(Nx+1)
    xneg = np.zeros(Nx+1)

    for i in range(0,Nx+1):
      xpos[i] = i+1
      xneg[i] = i-1
    xpos[Nx] = 0
    xneg[0] =  Nx

    # Iteração no tempo
    for n in range(0, Nt - 1):
        for i in range(0, Nx+1):
            u[n+1,i] = u[n,i] + (r/2) * (u[n, int(xpos[i])] - u[n,int(xneg[i])]) + (r**2/2) * (u[n, int(xpos[i])] - 2*u[n,i] + u[n,int(xneg[i])])

    return u
# Parâmetros
L = 2*np.pi
tf =1
v = 1 # -1. muda direção de propagação
Nx = 100
Nt = 500

solv3 = LaxWad(L, tf, v, Nx, Nt)

listX = np.linspace(0, L, Nx+1)
listT = np.linspace(0, tf, Nt)

X, T = np.meshgrid(listX, listT)

plt.figure(figsize=(10, 6))
plt.pcolormesh(X, T, solv3, cmap='viridis', shading='auto')
plt.colorbar(label='Amplitude(u)')
plt.xlabel('Posição (x)')
plt.ylabel('Tempo (t)')
plt.title('Solução Lax-Wendroff da Equação da advecção (1D)', fontsize=16)
plt.show()
Solução pelo método Lax-Wendroff
# Teste: Plota todas as curvas amplitude por posição de todos os tempos:

for tt in range(len(listT-1)):
  amplitudes_tt = solv3[ tt,:]
  plt.plot(listX, amplitudes_tt)

plt.title('Amplitude em Função da Posição')
plt.xlabel('Posição (x)')
plt.ylabel('Amplitude (u)')
plt.legend()
plt.grid(True)
plt.show()
Solução pelo método Lax-Wendroff