Método de Elementos Finitos: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Sem resumo de edição
Linha 11: Linha 11:
   
   
Este é um método numérico de resolução aproximada para problemas de valores sobre contorno em equações diferenciais. É largamente utilizado na industria para o desenvolvimento de novas tecnologias e produtos, pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, através da simulação da física de situações em que se espera que o projeto atue.
Este é um método numérico de resolução aproximada para problemas de valores sobre contorno em equações diferenciais. É largamente utilizado na industria para o desenvolvimento de novas tecnologias e produtos, pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, através da simulação da física de situações em que se espera que o projeto atue.


O que torna este método diferente é a forma com que ele discretiza e faz suas aproximações. Sua discretização é feita na geometria, ou seja, repartindo o objeto em diversos elementos menores. Desta forma é possível que se resolva problemas em geometrias complexas que seriam muito difíceis ou até impraticáveis com outros métodos. Também permite trabalhar com materiais compostos, ou de diferentes densidades em um objeto.
O que torna este método diferente é a forma com que ele discretiza e faz suas aproximações. Sua discretização é feita na geometria, ou seja, repartindo o objeto em diversos elementos menores. Desta forma é possível que se resolva problemas em geometrias complexas que seriam muito difíceis ou até impraticáveis com outros métodos. Também permite trabalhar com materiais compostos, ou de diferentes densidades em um objeto.


=== O Método ===
=== O Método ===
<q> O conceito fundamental do MEF é a aproximação de uma quantidade continua(p. ex., tensão elétrica, temperatura, etc.) através de um modelo discreto composto por um conjunto de funções simples definidas em um número finito de subdomínios(elementos)</q>


A resolução de um problema através do MEF envolve quatro etapas principais:
A resolução de um problema através do MEF envolve quatro etapas principais:

Edição das 16h19min de 6 de outubro de 2021

Em construção

Grupo: Antônio Carlan, Gabriela Pereira, Renan Soares e Victor Gandara

Objetivo: Apresentar uma introdução do Método de Elementos Finitos, abordando seu funcionamento e demonstrando suas etapas através de um exemplo, demonstrando seu potencial e o que o diferencia de outros métodos estudados nas cadeiras de métodos computacionais até então vistos.

Introdução ao Método de Elementos Finitos(MEF)

Aplicação

Este é um método numérico de resolução aproximada para problemas de valores sobre contorno em equações diferenciais. É largamente utilizado na industria para o desenvolvimento de novas tecnologias e produtos, pode ser utilizado tanto no processo de desenvolvimento quanto de otimização, através da simulação da física de situações em que se espera que o projeto atue.

O que torna este método diferente é a forma com que ele discretiza e faz suas aproximações. Sua discretização é feita na geometria, ou seja, repartindo o objeto em diversos elementos menores. Desta forma é possível que se resolva problemas em geometrias complexas que seriam muito difíceis ou até impraticáveis com outros métodos. Também permite trabalhar com materiais compostos, ou de diferentes densidades em um objeto.

O Método

O conceito fundamental do MEF é a aproximação de uma quantidade continua(p. ex., tensão elétrica, temperatura, etc.) através de um modelo discreto composto por um conjunto de funções simples definidas em um número finito de subdomínios(elementos)

A resolução de um problema através do MEF envolve quatro etapas principais:

  1. Discretização da região: Transformar o objeto de estudo em vários elementos menores que juntos formam o objeto original de forma aproximada e a isso chama-se Malha.
  2. Aproximação da solução: Obtenção das equações correspondentes de cada elemento, através de interpolação polinomial.
  3. Montagem do sistema global: Juntar os elementos e suas equações em uma matriz que fornecerá a solução global.
  4. Resolução do sistema: Resolver a matriz gerada para obter a solução aproximada do problema.

Discretização: A Malha