Mudanças entre as edições de "Introdução a Sistemas Dinâmicos"

De Física Computacional
Ir para: navegação, pesquisa
Linha 20: Linha 20:
  
 
1. Resolva os problemas
 
1. Resolva os problemas
  6.8, 6.9, 6.10, 6.12, 6.13 6.14, 6.15, 6.17, 6.18, 6.20, 6.23, 6.33, 6.36, 6.39, 6.42
+
  4.35 -> 4.38
  7.6, 7.8, 8.1,
+
6.1 -> 6.10, 6.12 -> 6.18, 6.20, 6.23, 6.33, 6.36, 6.39, 6.42
  8.2, 8.3, 8.4, 8.5, 8.6, 8.8, 8.11, 8.11, 8.12, 8.13, 8.19, 8.20, 8.21, 8.22,  
+
  7.6, 7.8
  10.1, 10.2, 10.3  
+
  8.1, -> 8.6, 8.8, 8.11 -> 8.13, 8.19 -> 8.22,  
 +
  10.1 -> 10.3  
 
do livro texto do curso (II edição).
 
do livro texto do curso (II edição).
  
 
2. Estude a resolução dos exemplos 10.1, 10.2, 10.3, 10.4.
 
2. Estude a resolução dos exemplos 10.1, 10.2, 10.3, 10.4.

Edição das 14h30min de 16 de novembro de 2011

Lista I

  1. Resolva os problemas 3.1 a 3.9 do livro texto (II edição).
  2. Resolva os problemas 4.16-4.21 do livro texto (II edição).
  3. Encontre a solução para  :
  4. Mostre que é solução para a equação .
  5. Uma bola de massa m cai sem atrito no campo gravitacional a partir do repouso em linha reta de uma altura h.
    Ao atingir o solo ela inverte instantaneamente sua velocidade, sem qualquer perda.
    1. Partindo da segunda Lei de Newton, escreva um sistema de equações diferenciais de primeira ordem que descreva a primeira queda.
    2. Faça um gráfico do espaço de fases desse sistema incluindo agora a reflexão no solo e a volta a posição inicial.
  6. O modelo de Hindmarsh-rose descreve o potencial de membrana () de um neurônio excitado por uma corrente I. Classifique esse sistema quando a conservação ou não do volume no espaço de fases.
  7. Encontre as soluções de equilíbrio para a equação, . Mostre que se aplica o teorema da unicidade e aplique-o para discutir a estabilidade dos pontos de equilíbrio.
  8. Discuta a estabilidade dos pontos fixos do pêndulo.
  9. No caso do pêndulo com dissipação, explique o cruzamento de linhas na origem do espaço de fases.
  10. Resolva os problemas 4.17,4.18, 4.19, 4.21, 4.25, 4.27 da segunda edição do livro texto da disciplina.
  11. Encontre a matriz de Jordan para o sistema: Escreva a solução para


Lista II

1. Resolva os problemas

4.35 -> 4.38
6.1 -> 6.10, 6.12 -> 6.18, 6.20, 6.23, 6.33, 6.36, 6.39, 6.42
7.6, 7.8
8.1, -> 8.6, 8.8, 8.11 -> 8.13, 8.19 -> 8.22, 
10.1 -> 10.3 

do livro texto do curso (II edição).

2. Estude a resolução dos exemplos 10.1, 10.2, 10.3, 10.4.