Grupo - Ising 2D

De Física Computacional
Edição feita às 19h29min de 20 de janeiro de 2018 por Lucasdoria (Discussão | contribs)

Ir para: navegação, pesquisa

Grupo: Ânderson Rosa, Caetano Pires e Lucas Doria.

sepa falar algo aqui tb

Introdução(?)

-talvez falar sobre materiais ferromagnéticos;

-falar sobre os conceitos de mec estatística necessários?;

-falar sobre o sistema de spins (geometricamente)?;

O Modelo de Ising

O modelo de Ising é construído a partir da assunção de que os spins do sistema apontam apenas na direção ou . Assim, o -ésimo spin do sistema pode assumir dois valores, que por conveniência são assumidos Cada um desses "Ising spins" interage com outros spins do sistema.

Em um material magnético real, a interação é maior entre spins mais próximos. Com essa motivação, uma forma de representar a interação entre os spins do sistema é levar em conta a interação apenas entre um spin e seus vizinhos mais próximos da cadeia de spins. A energia de tal sistema pode ser expressa por[1]

onde a soma se dá sobre todos os pares de spins mais próximos entre si, e é a constante de correlação, que assumimos positiva.

Uma análise qualitativa da expressão para a energia do microestado acima já mostra, por exemplo, que se dois spins são paralelos entre si, a energia de interação entre eles é . Se os spins são antiparalelos, então o produto dentro da soma é negativo, de forma que Portanto, as interações favorecem um alinhamento paralelo entre spins vizinhos.

Embora a energia do sistema seja menor quando todos os spins são paralelos entre si, é preciso considerar o efeito da temperatura sobre o sistema. No modelo estudado em questão, é considerado que o sistema se encontra em equilíbrio com uma fonte de temperatura , de forma que o comportamento do sistema pode ser estudado a partir do ensemble canônico.[1]

Para um sistema que se encontra em equilíbrio com uma fonte em temperatura , a probabilidade de encontrar o sistema em um estado particular é proporcional ao fator de Boltzmann</ref>fator de Boltzmann[1]

onde é a energia do estado correspondente e a constante de Boltzmann. Cada um desses estados é uma configuração particular do conjunto de spins, chamados microestados do sistema. Portanto, se temos uma cadeia com Ising spins, o sistema possui microestados possíveis.

Teoria do Campo Médio: Uma abordagem aproximada

O método do campo médio pode ser utilizado para introduzir algumas propriedades de um sistema de spins, assim como uma primeira análise de transições de fase. Porém seus resultados não são quantitativamente exatos, sendo necessária uma abordagem diferente ao problema para fins de resultados melhores.\\

A magnetização do sistema está relacionada ao alinhamento de spin médio $<s_i>$

O Método de Monte Carlo

Transições de fase(?)

Conclusões e Observações ?

Referências

  1. 1,0 1,1 N. J. Giordano, "Computational Physics". Department of Physics, Purdue University. Upper Saddle River, New Jersey. Prentice-Hall, 1997.