Grupo3 - Ondas2: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 109: Linha 109:


=== O Método de Leapfrog ===
=== O Método de Leapfrog ===
Podemos adaptar o método de Leapfrog para esse sistema de equações ao fazermos
<math>
k_{i+\frac{1}{2}}^n \equiv v \left.\frac{\partial u}{\partial x}\right|_{i+\frac{1}{2}}^{n} = v \frac{u_{i+1}^n-u_i^n}{\Delta x} + \mathcal{O}(\Delta x) \qquad (1)
</math>
<math>
s_{i}^{n+\frac{1}{2}} \equiv \left.\frac{\partial u}{\partial t}\right|_{i}^{n+\frac{1}{2}} = \frac{u_{i}^{n+1}-u_i^n}{\Delta t} + \mathcal{O}(\Delta t) \qquad (2)
</math>
Com a representação Leapfrog das equações do sistema de três equações, temos:
<math>
k_{i+\frac{1}{2}}^{n+1} = k_{i+\frac{1}{2}}^n+r(s_{i+1}^{n+\frac{1}{2}}-s_{i}^{n+\frac{1}{2}})+\mathcal{O}(\Delta x^2) \qquad (3)
</math>
<math>
s_i^{n+\frac{1}{2}} = s_{i}^{n-\frac{1}{2}}+r(k_{i+\frac{1}{2}}^{n}-k_{i-\frac{1}{2}}^{n})+\mathcal{O}(\Delta x^2) \qquad (4)
</math>
Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter <math>u_j^{n+1}</math>, ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:
<math>u_i^{n+1} = u_i^n + \frac{\Delta t}{2}s_i^{n+\frac{1}{2}}+\mathcal{O}(\Delta x^2).</math>
Contudo, podemos fazer uma simples substituição das equações <math>(1)</math> e <math>(2)</math> nas equações <math>(3)</math> e <math>(4)</math> e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com <math>\mathcal{O}(\Delta t^2, \Delta x^2)</math>. Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.


=== O Método de Lax-Wendroff ===
=== O Método de Lax-Wendroff ===

Edição das 22h26min de 24 de outubro de 2017

Introdução

Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:

,

onde é o vetor de densidades da quantidade conservada, i.e., , é o fluxo de densidade e é um termo genérico representando fontes ou sumidouros.

Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada é proporcional à sua derivada espacial. Nesses casos, é diagonal e dada por:

,

onde é a matriz identidade.

Considerando apenas uma dimensão e com , temos a equação de adveção:

,

onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .

A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por

E admite duas soluções, representadas por pulsos, e .

Assumindo que na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos

,

então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:

Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: ,

onde

O Problema Físico

O Modelo de Corda Ideal

Para uma primeira abordagem da equação da onda, podemos primeiro dividir o comprimento da corda em intervalos de comprimentos iguais, dessa forma . Cada intervalo é discretizado, representado por , . Também podemos dividir o tempo em intervalos iguais e denotá-los como , .

Tendo feita a discretização das variáveis, podemos aproximar a equação da onda por diferenciação finita:

.

Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo

,

onde

Um Quadro Mais Realístico - O Modelo de Corda Rígida

Para nos aproximarmos de um modelo mais real, podemos adicionar um termo à equação original da onda que corresponde ao efeito de fricção em uma corda. De acordo com [1], a equação da onda mais geral com efeito de fricção pode ser escrita como

onde é a velocidade transversal de propagação do pulso na corda, dada pela relação (sendo a tensão na corda e a densidade linear da mesma), é um parâmetro adimensional de fricção que representa a rigidez da corda e o comprimento da corda.

O parâmetro é dado por

Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \epsilon = \kappa² \frac{E S}{T L^2}} ,

onde é o raio da corda, é o Módulo de Young e a área da secção da corda.

Ao discretizarmos a equação da onda em uma corda com fricção e a resolvendo para obtemos:

O fato de essa discretização depender do deslocamento da corda em posições e implica em precisarmos simular "pontos fantasmas" quando integramos os extremos das cordas. Para fazermos isso, podemos ou utilizar a aproximação ou podemos considerar esses "pontos fantasmas" como pontos presos e, portanto, sempre iguais a zero.

Os Métodos Utilizados

Foi realizada uma abordagem ao problema da corda real a partir de três métodos diferentes de integração numérica. Os três são métodos para fins de resolução de equações diferenciais parciais da forma apresentada anteriormente.

O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto :

Subtraindo as duas expressões, encontramos a expressão

,

A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas:

Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores.

O Método de Lax-Friedrichs

O método de Lax-Friedrichs consiste em substituir o termo com sua respectiva média espacial, i.e., . Logo, temos a seguinte equação de recorrência:

O Método de Leapfrog

Podemos adaptar o método de Leapfrog para esse sistema de equações ao fazermos

Com a representação Leapfrog das equações do sistema de três equações, temos:


Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter , ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:

Contudo, podemos fazer uma simples substituição das equações e nas equações e e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com . Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.

O Método de Lax-Wendroff

O método de Lax-Wendroff é a extensão do método de Lax-Friedrichs de segunda ordem. Calculamos o vetor a partir de um passo médio de Lax-Friedrichs:

,

,

E encontramos os fluxos a partir dos valores de

Logo, com um meio passo de Leapfrog, temos a expressão final do método: