Gás de Rede 2D: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Sem resumo de edição
Linha 15: Linha 15:
<math>\mathcal{H} = - \frac{1}{4} \epsilon \sum^{N}_{\langle i,j \rangle} (s_i + 1)(s_j + 1)/math>
<math>\mathcal{H} = - \frac{1}{4} \epsilon \sum^{N}_{\langle i,j \rangle} (s_i + 1)(s_j + 1)/math>


{{Referências}}


== Referências ==
== Referências ==


<references/>
<references/>

Edição das 18h28min de 16 de agosto de 2020

EM CONSTRUÇÃO

Gás de Rede

O Modelo do Gás de Rede 2D consiste em um sistema de partículas da forma onde cada sítio da rede pode assumir o valor , ocupado por uma partícula, ou , não ocupado por uma partícula. A energia total do sistema é dada pelo Hamiltoniano do Gás de Rede, descrito pela equação

Onde o somatório é dado entre os quatro vizinhos mais próximos e é a constante de interação entre as partículas, para a interação é atrativa. Por se tratar de uma rede quadrada com sítios, apenas uma parcela da rede é ocupada por partículas, ou seja, possuímos uma densidade constante de partículas. Podemos expressar a condição da densidade constante da forma

Fazendo uma mudança de variáveis da forma saímos da situação de ocupação e não ocupação de sítios e obtemos variáveis do Modelo de Ising [1], spins Up e Down. A variável assume valor (up) quando o sítio esta ocupado por uma partícula e quando não está. Aplicando a mudança de variáveis no Hamiltoniano do Gás de Rede obtemos

<math>\mathcal{H} = - \frac{1}{4} \epsilon \sum^{N}_{\langle i,j \rangle} (s_i + 1)(s_j + 1)/math>


Predefinição:Referências 

Referências